首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The binding of cyclic AMP to the proximal tubule luminal (brush border) membrane isolated from the rabbit renal cortex was studied. The rate of binding was dependent on temperature; at 37 degrees equilibrium was attained in 45 min, whereas at 0 degrees 120 min was required. The final levels of binding were identical. The binding of 3H-cyclic AMP was reversed by dilution or addition of unlabeled cyclic nucleotide. Debinding was markedly temperature sensitive. Binding was only partially saturable with respect to cyclic AMP concentration, apparently with more than one binding site. The cyclic AMP bound to the membrane was recovered unchanged. When bound to the membrane cyclic AMP was resistant to hydrolysis by endogenous membrane or exogenously added phosphodiesterase. The binding to the membranes was relatively specific for cyclic AMP, although other cyclic purine nucleotides inhibited, cyclic IMP greater than dibutyryl cyclic AMP greater than cyclic GMP. The renal membranes did bind cyclic GMP, but this binding was relatively non-specific. Hormones and drugs, that mediate cyclic AMP generation or renal function, as well as other compounds common to the proximal tubule were without significant effect on cyclic AMP binding. Binding was inhibited by sulfhydryl reacting agents and this inhibition could be blocked and partially reversed by mercaptoethanol.  相似文献   

3.
Summary Studies were performed to characterize the binding1 of bile acids to intestinal brush border membranes. Total14C-taurodeoxycholate binding was: 1) similar for brush borders prepared from jejunum and ileum, 2) linear with respect to monomer concentration, 3) uninhibited by a structural analog, and 4) not depressed by boiling or trypsin. A linear relationship existed between binding and the number of hydrogen bonds formed by a bile acid and the slope of the line corresponded to F of 300 cal/mol. The binding of bile acids to the 105,000×g supernatant fraction of sonicated brush borders was similar to the binding of phospholipid liposomes using gel chromatography. These data suggest that: 1) the kinetics and characteristics of binding of bile acid to ileal brush borders do not reflect the kinetics and characteristics of active ileal transport previously obtained in whole tissue preparations, but instead reflect the kinetics and characteristics of passive jejunal transport; 2) a determinant of binding is hydrogen bonding with water; 3) isolated intact brush borders are relatively polar membranes; and 4) binding to solubilized brush borders may represent partitioning between the aqueous phase and membrane lipid.Part of this work was presented at the National Meeting of the American Federation for Clinical Research, May 2, 1976, Atlantic City, New Jersey.  相似文献   

4.
The characteristics of folate binding by brush border membranes from rat kidney homogenates were investigated. At pH 7.4, binding of [3′, 5′, 9-3H]-pteroylglutamic acid to membranes containing endogenous folate is inhibited by anions, with chloride being most effective followed by bromide, thiocyanate, iodide, phosphate and sulfate. A maximum inhibition of 70–75% is attained at a concentration of 0.1 M chloride and an incubation time of 30 min. The inhibition diminishes with increased incubation time and at 24 h is negligible. The binding of [3′,5′,9-3H]pteroylglutamic acid to brush border membranes stripped of endogenous folate by acid treatment is not inhibited by anions. Anion sensitivity can be restored to these treated membranes by reconstitution with membrane-derived folate, particularly 5-methyltetrahydropteroylglutamic acid, or by preincubation with synthetic 5-methyltetrahydropteroylglutamic acid. Inhibition of [3′,5′,9-3H]pteroylglutamic acid binding by anions in membranes with endogenous folate is best explained by an anion-induced stabilization of endogenous folate-binding protein complex resulting in a decreased rate of exchange with exogenous [3′,5′,9-3H]pteroylglutamic acid.  相似文献   

5.
Using hypotonically treated brush border membranes, binding and transport of myo-inositol were examined.By hypotonic treatment, both total and non-specific uptake decreased significantly, but specific uptake was not affected.myo-Inositol release from membranes preloaded by incubation for 2 min was very rapid and about 98% of preloaded myo-inositol was released in 5 min of incubation. However, myo-inositol release from membranes preloaded by incubation for 20 min was fairly slow and 50% of myo-inositol remained in the membranes even after 10 min of incubation.Uptake of myo-inositol decreased by the increase of osmolarity in the medium. However, effect of osmolarity on the uptake was less significant when myo-inositol concentration was lower.Under conditions in which mainly binding occurred, myo-inositol binding to the membranes was measured. Two binding systems were demonstrated and high affinity site could bind 22 pmol/mg protein at most and the apparent Km value was 8.3 μM.Both binding and transport processes were dependent on Na+ and enhanced by Na+-gradient.  相似文献   

6.
Studies were performed to characterize the binding1 of bile acids to intestinal brush border membranes. Total 14C-taurodeoxycholate binding was: 1) similar for brush borders prepared from jejunum and ileum, 2) linear with respect to monomer concentration, 3) uninhibited by a structural analog, and 4) not depressed by boiling or trypsin. A linear relationship existed between binding and the number of hydrogen bonds formed by a bile acid and the slope of the line corresponded to delta deltaF of 300 cal/mol. The binding of bile acids to the 105,000 x g supernatant fraction of sonicated brush borders was similar to the binding of phospholipid liposomes using gel chromatography. These data suggest that: 1) the kinetics and characteristics of binding of bile acid to ileal brush borders do not reflect the kinetics and characteristics of active ileal transport previously obtained in whole tissue preparations, but instead reflect the kinetics and characteristics of passive jejunal transport; 2) a determinant of binding is hydrogen bonding with water; 3) isolated intact brush borders are relatively polar membranes; and 4) binding to solubilized brush borders may represent partitioning between the aqueous phase and membrane lipid.  相似文献   

7.
8.
The absorbance change of the weak base dye probe, Acridine orange, was used to monitor alterations of pH gradients across renal brush border membrane vesicles. The presence of Na+/H+ or Li+/H+ exchange was demonstrated by diluting Na2SO4 or Li2SO4 loaded vesicles into Na+- or Li+-free solutions, which caused dye uptake. About 20% of the uptake was abolished by lipid permeable cations such as valinomycin-K+ or tetraphenylphosphonium, indicating perhaps the presence of a finite Na+ conductance smaller than electroneutral Na+/H+ exchange. The protonophore tetrachlorosalicylanilide raised the rate of dye uptake under these conditions, hence the presence of an Na+ conductance greater than the H+ conductance was suggested. K+ gradients also induced changes of pH, at about 10% of the Na+ or Li+ rate. Partial inhibition (21%) was seen with 0.1 mM amiloride indicating that K+ was a low affinity substrate for the Na+/H+ exchange. Acceleration both by tetrachlorosalicylanilide (2-fold) and valinomycin (4-fold) suggested the presence of 2 classes of vesicles, those with high and those with low K+ conductance. The larger magnitude of the valinomycin dependent signal suggested that 75% of the vesicles had a low K+ conductance. Inward Cl? gradients also induced acidification, partially inhibited by the presence of tetraphenylphosphonium, and accelerated by tetrachlorosalicylanilide. Thus both a Cl? conductance greater than the H+ conductance and a Cl?/OH? exchange were present. The rate of Na+/H+ exchange was amiloride sensitive with a pH optimum of 6.5 and an apparent Km for Na+ or Li+ of about 10 mM and an EA of 14.3 kcal per mol. A 61-fold Na2SO4 gradient resulted in a pH gradient of 1.64 units which increased to 1.8 with gramicidin. An equivalent NaCl gradient gave a much lower ΔpH even in the presence of gramicidin showing that the H+ and Cl? pathways could alter the effects of the Na+/H+ exchange.  相似文献   

9.
10.
11.
12.
A number of cell surface proteins have been shown to be anchored to the plasma membrane by a covalently attached glycoinositol phospholipid (GPL) in amide linkage to the C-terminus of the mature protein. We applied several criteria to establish that folate binding protein (FBP) in brush border membranes of rat kidney contains a GPL anchor. Brush border membranes were isolated and labeled with [3H]folate, and the complex of FBP and [3H]folate was shown to be released to the supernatant by incubation with purified bacterial phosphatidylinositol-specific phospholipase C (PIPLC) but not by incubation with a purified bacterial phosphatidylcholine-specific phospholipase C. The FBP-[3H]folate complex both in crude extracts and after FBP purification by ligand-directed affinity chromatography interacted with Triton X-114 micelles, and prior incubation with PIPLC prevented this detergent interaction. Individual residues characteristic of GPL anchors were found to be covalently associated with FBP following polyacrylamide gel electrophoresis in sodium dodecyl sulfate. These included glucosamine and ethanolamine, which were radiolabeled by reductive methylation and identified by chromatography on an amino acid analyzer, and inositol phosphate, which was inferred by Western blotting with an anti-CRD antisera. This antisera gave positive immunostaining only after FBP had been cleaved by PIPLC, a reliable diagnostic of a GPL anchor. The relationship between GPL-anchored FBP in biological membranes and soluble FBP in biological fluids also is discussed.  相似文献   

13.
Binding of [(3)H]folic acid by isolated rat jejunal brush border membranes (BBMs) was analyzed by chromatography on small Biogel P-30 columns. Folic acid binding to BBMs exhibited a prominent pH effect with a sharp maximum at pH 5.5 to 6.0. After acid treatment to strip the BBMs of bound folate, the membranes demonstrated a wider pH optimum (5.5 to 7.5) of folate binding and a higher binding capacity. Scatchard analysis of binding experiments performed at pH 6.0 revealed the existence of two components: one with a high affinity (kd = 12 to 25 nM) and low capacity (V(max) for non-acidified BBMs = 0.259 to 0.264 pmol/mg protein, V(max) for acidified BBMs = 0.41 to 0.71 pmol/mg protein) and the other with a low affinity (kd = 1.1 to 5.1 microM and high capacity (V(max) for non-acidified BBMs = 0.93 to 1.93 pmol/mg protein, V(max) for acidified BBMs = 4.05 to 7.69 pmol/mg protein). Phosphatidylinositol-specific phospholipase C preferentially detached the high affinity component from jejunal BBMs. Phosphatidylinositol-specific phospholipase C-released folate binding protein was precipitated by antibodies to the high-affinity folate-binding protein from rat kidney. These data suggest the existence of two different folate-binding proteins in isolated rat jejunal BBMs. The high-affinity folate-binding protein shares epitopes with the folate-binding protein in the kidney.  相似文献   

14.
A monoclonal antibody (C219) that recognizes the P-glycoprotein (Mr = 170,000) in plasma membranes of multidrug-resistant Chinese hamster ovary (CHO) cell lines was used to assay renal brush border membrane (BBM) and basolateral membrane (BLM) fractions for the presence of a cross-reactive polypeptide. The C219 antibody bound to a 155,000 dalton protein in immunoblots of rat BBM but not BLM proteins resolved by sodium dodecyl sulfate gel electrophoresis. The corresponding human kidney BBM and dog kidney BBM proteins had molecular weights of 170,000 and 160,000 respectively. The glycoprotein nature of the renal protein was shown by its sensitivity to N-glycanase treatment which reduced the apparent molecular weight of the dog protein to 120,000. In addition, dog P-glycoprotein could be bound to and eluted from immobilized wheat germ agglutinin. The molecular weight, antibody crossreactivity, glycosidase sensitivity and lectin binding show that this protein is a normal kidney analogue of the P-glycoprotein induced in multidrug resistant cell lines.  相似文献   

15.
16.
Cross-talk between cells and the extracellular matrix is critically influenced by the mechanical properties of cell surface receptor-ligand interactions; these interactions are especially well defined and regulated in cells capable of dynamically modifying their matrix environment. In this study, attention was focused on osteoclasts, which are absolutely dependent on integrin extracellular matrix receptors in order to degrade bone; other bone cells, osteoblasts, were used for comparison. Integrin binding forces were measured in intact cells by atomic force microscopy (AFM) for several RGD-containing (Arg-Gly-Asp) ligands and ranged from 32 to 97 picoNewtons (pN); they were found to be cell and amino acid sequence specific, saturatable and sensitive to the pH and divalent cation composition of the cellular culture medium. In contrast to short linear RGD hexapeptides, larger peptides and proteins containing the RGD sequence, such as osteopontin (a major non-collagenous bone protein) and echistatin (a high affinity RGD sequence containing antagonist snake venom protein), showed different binding affinities. This demonstrates that the context of the RGD sequence within a protein has considerable influence upon the final binding force for receptor interaction. These data also demonstrate that AFM, as a methodological approach, can be adapted to cell biology studies wherever cell-matrix interactions play a critical role, and, moreover, may have applicability to the analysis of receptor-ligand interactions in cell membranes in general.  相似文献   

17.
Single protein misfolding events captured by atomic force microscopy.   总被引:6,自引:0,他引:6  
Using single protein atomic force microscopy (AFM) techniques we demonstrate that after repeated mechanical extension/relaxation cycles, tandem modular proteins can misfold into a structure formed by two neighboring modules. The misfolding is fully reversible and alters the mechanical topology of the modules while it is about as stable as the original fold. Our results show that modular proteins can assume a novel misfolded state and demonstrate that AFM is able to capture, in real time, rare misfolding events at the level of a single protein.  相似文献   

18.
19.
Lipopolysaccharides (LPS; endotoxin) activate immunocompetent cells of the host via a transmembrane signaling process. In this study, we investigated the function of the LPS-binding protein (LBP) in this process. The cytoplasmic membrane of the cells was mimicked by lipid liposomes adsorbed on mica, and the lateral organization of LBP in these membranes and its interaction with LPS aggregates were characterized by atomic force microscopy. Using cantilever tips functionalized with anti-LBP antibodies, single LBP molecules were localized in the membrane at low concentrations. At higher concentrations, LBP formed clusters of several molecules and caused cross-linking of lipid bilayers. The addition of LPS to LBP-containing liposomes led to the formation of LPS domains in the membranes, which could be inhibited by anti-LBP antibodies. Thus, LBP mediates the fusion of lipid membranes and LPS aggregates.  相似文献   

20.
Actin binding proteins of the brush border   总被引:3,自引:0,他引:3  
M S Mooseker 《Cell》1983,35(1):11-13
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号