首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The methylation and amplification of mouse mammary tumor virus (MuMTV) proviral DNA was investigated in normal, premalignant, and malignant tissues of GR/A mice. The proviral methylation pattern was examined with the restriction enzyme HhaI, which fails to cleave methylated DNA. MuMTV proviral DNA from liver, kidney, and heart was highly methylated. Proviral DNA was somewhat undermethylated in mammary gland cells from virgin and lactating mice and extensively undermethylated in cells from premalignant outgrowths, pregnancy-dependent tumors, and pregnancy-independent tumors. The restriction enzyme SacI was used to detect additional proviruses in the same cells. No additional proviral copies of MuMTV were detected in liver, kidney, or heart cells or in mammary gland cells from virgin mice. Some mammary gland cells from lactating mice appeared to contain additional copies of the endogenous, highly oncogenic GT-MTV-2 provirus. Premalignant outgrowth, pregnancy-dependent tumor, and pregnancy-independent tumor cells contained an average of two to three additional copies per cell of the GT-MTV-2 provirus. Thus, neoplasia in GR/A mice was directly associated with quantized increases in MuMTV proviral DNA undermethylation and GR-MTV-2 proviral DNA amplification. Restriction enzyme analysis suggested that premalignant outgrowths and pregnancy-dependent tumors both consisted largely of heterogenous cell populations, although some evidence of clonal dominance was detected.  相似文献   

2.
To understand the molecular mechanisms by which the endogenous murine mammary tumor virus (MuMTV) proviruses are expressed and produce late-occurring mammary tumors in C3Hf mice, we analyzed, by the use of restriction enzymes and the Southern transfer procedure, genomic DNA from normal organs of mammary tumor-bearing and tumor-free mice and from 12 late-occurring C3Hf mammary tumors. We found, by using the restriction enzymes EcoRI and HindIII, that in addition to the preexisting endogenous MuMTV proviruses, new MuMTV-specific proviral DNA was integrated into new sites in the host genome in all 12 of the tumors that we examined. PstI digests of C3Hf tumor DNA revealed that the new proviral DNA found in C3Hf tumors was of endogenous origin. Moreover, the respective sizes of at least one of the new DNA fragments generated by EcoRI or HindIII digestion were the same in at least 50% of the C3Hf tumors analyzed, suggesting that the integration site of this new proviral DNA could be at the same location in the host genome of these tumors. Our results may imply that mammary tumorigenesis in C3Hf mice results from activation of cellular oncogenes by an MuMTV proviral DNA promoter. Specific hypomethylation of MuMTV proviral DNA was detected in the mammary tumors and spleens of C3Hf tumor-bearing mice. Our results indicated that most, if not all, of the hypomethylated MuMTV proviral DNA sequences were derived from the endogenous MuMTV provirus located at the MTV-1 locus, a locus responsible for the production of MuMTV antigens and increased incidence of mammary carcinoma in C3Hf mice. In spleens of non-tumor-bearing mice of ages 3, 6, 9, and 12 months, there was progressive hypomethylation of proviral DNA with increasing age, suggesting a possible correlation between demethylation of MuMTV proviral DNA in the spleens of C3Hf mice and the expression of endogenous MuMTV.  相似文献   

3.
We used a two-dimensional Southern blotting procedure to analyze the tissue-specific methylation patterns of the five endogenous mouse mammary tumor viruses in the GR/A mouse strain. Our findings suggest that in certain tissues (brain, kidney, and liver) all proviruses are extensively methylated. In other tissues (spleen, placenta, and testes) all proviruses are hypomethylated to some degree. In these tissues individual proviruses display both quantitative and qualitative differences in methylation. We interpret the general patterns of tissue-specific hypomethylation in terms of a "hitch-hiker" model: mouse mammary tumor virus proviral methylation patterns reflect the tissue-specific activity of neighboring sequences. The observation that certain sites on particular proviruses are differentially methylated in a tissue-specific fashion may reflect tissue-specific differences in the makeup or conformation, or both, of proviral-containing chromatin.  相似文献   

4.
5.
Cellular DNA containing integrated murine mammary tumor virus (MuMTV) was isolated from FeI/C6 feline kidney cells and CCL64 mink lung cells infected with milkborne RIII MuMTV. By using restriction enzyme HpaI, intact RIII MuMTV provirus (length, 8.7 kilobases [kb]) was excised from the cellular DNA. Subsequent restriction endonuclease analysis of this HpaI fragment with KpnI, HindIII, EcoRI, BamHI, BglII, PstI, SstI, SalI, and XhoI enabled us to construct a map of the RIII virus genome. A comparison of this map with the maps of the GR and C3H MuMTV's revealed that there are greater sequence differences between the RIII virus and the GR and C3H MuMTV proviruses than there are between the GR and C3H proviruses. The following are features of the restriction map unique to the RIII provirus: the presence of three BamHI and two EcoRI cleavage sites, a HpaI cleavage site in the terminal 3'-5' repeat unit of the provirus, and the absence of an XhoI cleavage site. Another distinguishing feature of the RIII provirus is that the sizes of some of the restriction fragments produced by cleavage of the RIII provirus with PstI are different from the sizes of the fragments obtained by PstI cleavage of the GR and C3H proviruses. Like the GR proviral DNA, the RIII proviral DNA has three SstI (SacI) cleavage sites, whereas the C3H provirus has only two SstI sites. HpaI digestion of MuMTV-infected mink lung cell DNA revealed only one class of provirus (an 8.7-kb fragment); however, we observed several minor classes of RIII proviral DNA in addition to the major class of provirus DNA in infected cat kidney cells. PstI digestion of the HpaI 8.7-kb fragments from both feline and mink cells generated a 3.7-kb DNA fragment identical in size to a PstI-generated fragment that has been found in GR and C3H milkborne virus-infected cells. Although a fragment similar in size to the milkborne 3.7-kb PstI fragment has been found as an endogenous component in many C3H and GR mouse tissues, we did not observe such an endogenous fragment in the RIII mouse strain. Therefore, the 3.7-kb fragment may be useful as a marker for the milkborne RIII MuMTV provirus in RIII mice.  相似文献   

6.
Multiple endogenous mouse mammary tumour virus (MMTV) proviral genes are present at different chromosomal locations in inbred mouse strains. Proviral DNA methylation is location and tissue specific. The methylation patterns are stably inherited and appear to be conferred upon the viral DNA by the flanking mouse genomic DNA. In transformed cells, either mammary carcinoma cells, or cells immortalized by SV40 in vitro, the stable pattern of methylation is lost. Although hypomethylation of proviral genes, both in normal and in transformed tissue, accompanies MMTV-specific RNA expression, it is also observed in non-expressing tissues.  相似文献   

7.
DNAs extracted from the mammary tumors of GR mice were analyzed for mouse mammary tumor virus proviral sequences by the restriction enzyme-Southern blot procedure. The tumor DNAs contain more proviral copies of mouse mammary tumor virus than DNA from a nonmalignant tissue. The degree of proviral amplification is small (ca. one to five additional copies) and appears to be variable from tumor to tumor. The restriction patterns of the amplified proviral sequences suggest a clonal origin for the tumor mass. In addition, the restriction patterns observed after digestion with the enzymes BglII and SacI indicate that only one of the proviruses endogenous to GR mice is amplified. The amplified provirus found in GR mammary tumors is identical to the provirus that is missing in GR-Mtv-2- mice, a congenic line exhibiting a low mammary tumor incidence.  相似文献   

8.
R Michalides  R van Nie  R Nusse  N E Hynes  B Groner 《Cell》1981,23(1):165-173
The mammary tumor induction genes Mtv-1 in mouse strain DBAf and Mtv-2 in strain GR control the complete expression of the endogenous mouse mammary tumor virus (MMTV). We have used a combination of genetic, biochemical and molecular biological methods to identify and correlate specific copies of the endogenous MMTV proviral genes with the biological properties of the tumor induction genes Mtv-1 and Mtv-2. These Mtv induction genes contain specific MMTV proviral information, as was concluded from restriction enzyme analysis and molecular hybridization of DNAs of congenic mouse strains and of progenitors of backcross populations. The congenic strains differed from the parental strains GR and 020 only in the Mtv-2 gene, one lacking the Mtv-2 gene (GR/Mtv-2-) and one having obtained this gene (020/Mtv-2+). The gain or loss coincided with two Eco RI cellular DNA fragments containing MMTV DNA information. Since Eco RI cuts the exogenous proviral variant of MMTV DNA once, we assume that these two cellular DNA fragments contain one MMTV provirus. The same cellular DNA fragments containing MMTV DNA information segregated together with MMTV expression in the offspring population of the backcross. In a similar backcross analysis of the induction gene Mtv-1 it was also demonstrated that the Mtv-1 gene comprises one MMTV provirus. These data indicate that Mtv induction genes contain specific but different MMTV proviral genes and that nly a limited number of the MMTV proviruses present in the cellular DNA is associated with the control of proviral expression.  相似文献   

9.
Expression of endogenous murine mammary tumor viruses (MuMTVs) in various mouse strains is regulated in different ways, and in the absence of exogenous MuMTV, this regulation influences the incidence of spontaneous mammary tumors. Two mouse strains with low mammary tumor incidence, BALB/c and C57BL, control endogenous MuMTV expression at different stages. Neither of the strains had any detectable MuMTV polypeptides in its lactating mammary glands (LMG). However, in C57BL LMG, substantial amounts of MuMTV RNA were present, whereas very little viral RNA was detected in BALB/c LMG. By determining MuMTV RNA levels in LMG of hybrids and backcrosses of BALB/c and C57BL mice, we found that there are three unlinked, independently segregating genetic loci in C57BL mice that are responsible for the presence of moderately high amounts of MuMTV RNA in LMG. The viral RNA in C57BL LMG was processed and transported to the cytoplasm where it was found to cosediment with EDTA-sensitive polysomes. No viral proteins were detected in run-off reactions that permit completion of nascent polypeptide synthesis with polysomes from C57BL LMG, and sensitive radioimmunoassays failed to detect any MuMTV proteins in these tissues. In contrast, MuMTV mRNA purified from C57BL LMG did direct the synthesis of both gag and env MuMTV polypeptides when added to a heterologous rabbit reticulocyte lysate cell-free translation system. We propose that MuMTV mRNA in C57BL LMG, for unknown reasons, is blocked at the translational level.  相似文献   

10.
Proviral sequences complementary to the C3H mouse mammary tumor virus RNA genome are present in the DNA of early occurring mammary tumors of C3H/HeN mice and are absent from apparently normal C3H/HeN tissues; these sequences are non-germ line transmitted in C3H/HeN mice and have been termed tumor-associated sequences; (W. Drohan et al., J. Virol. 21:986-995, 1977). We report here that tumor-associated sequences are present in the DNA of spontaneous mammary tumors that occur early in the life of several inbred, high-tumor-incidence mouse strains but are absent in mammary tumors that occur later in life in low- and moderate-tumor-incidence strains. These sequences are also absent in apparently normal organs tested from numerous laboratory mouse strains, feral mice, Mus musculus subspecies, and other Mus species. Sequences represented in tumor-associated sequence RNA, however, are present as endogenous provirus in GR mice (at approximately four copies per haploid genome) and in two of five substrains of C3H mice tested (at approximately one copy per haploid genome). The two substrains of C3H mice positive for endogenous tumor-associated sequence provirus were recently (circa 1930) separated from the negative substrains of C3H mice. The results may be explained by the unlikely chance segregation of proviral sequences or by the recent integration of viral genes (within the last few decades). Whereas radioactively labeled mouse mammary tumor virus 60-70S RNA or complementary DNA detected mouse mammary tumor virus-related proviral information in all laboratory mouse strains, feral mice, subspecies of M. musculus, and other species of Mus, the use of tumor-associated sequence RNA clearly revealed the genetic diversity that may exist between different colonies or substrains of "inbred" laboratory mice commonly used in cancer research.  相似文献   

11.
Restriction fragments of the mouse mammary tumor virus (MMTV) proviral DNA were obtained by molecular cloning procedures. A 4-kilobase fragment delimited by two PstI sites was isolated from unintegrated, linear MMTV DNA and amplified in the pBr322 plasmid vector. EcoRI fragments of proviral DNA, integrated into the genome of a GR mammary tumor cell line, were isolated as lambda recombinant molecules. Five different recombinant phages which contained the 3' region of the MMTV proviral DNA and adjacent host DNA sequences were isolated. Heteroduplex analysis and S1 nuclease digestion suggested that there is no extensive sequence homology in the host DNA flanking the different proviral genes. The cloned DNA was fractionated into site-specific restriction fragments which served as molecular probes in the analysis of the endogenous MMTV proviral copies of C3H, GR, BALB/c, and feral mice. This allowed the correlation of MMTV-specific EcoRI fragments obtained from genomic DNA of these strains with the 5' and 3' ends of the proviral gene. Restriction fragments of two clones which contained the proviral sequences adjacent to the flanking host DNA as well as 1 to 2 kilobases of host DNA were used as hybridization probes, and the results allow the following conclusions: the proviral DNA of both clones contains nucleotide sequences complementary to the 5' and 3' ends of proviral DNA; and the host DNA flanking one clone belongs to the unique class of genomic DNA, whereas the DNA flanking the second clone is reiterated at least 15 times within the mouse genome.  相似文献   

12.
In view of reports that human breast cancer cells secrete growth factors that can replace estradiol in sustaining tumor growth [1], we have investigated whether hormone independent (HI) GR mouse mammary tumors can sustain growth of estrogen-depleted hormone dependent (HD) tumors. HD GR mammary tumor TSl 106 was grafted subcutaneously in the right flank of estrone plus progesterone treated castrated (020 X GR)F1 mice. After 2 weeks the estrone treatment was stopped and the mice received 50, 100 or 150 mg HI GR mammary tumor TSl 104 in the left flank. However, the regression of the HD tumor due to estrone depletion was not prevented or retarded by the HI grafts. In other experiments we investigated integrations of mouse mammary tumor virus (MMTV) proviral DNA in the DNA of GR mammary tumors. We could demonstrate the presence of two cell populations in tumor TSl 96, both HD but differing in MMTV DNA integration events. Our data indicate that exogenous integrations of MMTV proviruses can take place in mouse mammary tumor DNA without loss of hormone dependency of the tumors. Like in GR/Mtv-2+ mice, mammary tumor transplants differing in MMTV proviral integrations are also observed in 020/Mtv-2+ mice.  相似文献   

13.
The Southern DNA filter transfer technique was used to study the involvement of the endogenous mouse mammary tumor virus (MMTV) in the development of mammary tumors of nonviral etiology. The presence of extra MMTV proviruses in the genomes of these non-virally induced mammary tumors would indicate an integration of the provirus of an activated endogenous MMTV. Acquisition of MMTV proviruses did not seem to be an absolute requirement for the development of hormone or carcinogenically induced mammary tumors in strain BALB/c nor for hormone-induced mammary tumors in mouse strains 020, C57BL, and C3Hf. In some hormone-induced mammary tumors we did observe extra MMTV proviruses in submolar quantities, indicating that reintegration may occasionally occur and that only a part of the tumor cells acquired new MMTV DNA information. Hormone-dependent and -independent primary mammary tumors of the mouse strain GR, which are controlled by the Mtv-2 mammary tumor induction gene, all acquired extra MMTV proviruses. Most of these extra MMTV proviral-DNA-containing fragments appeared present in submolar quantities, suggesting that only part of the tumor cells acquired extra MMTV proviral information. These findings indicate that the initially transformed mammary gland cells of non-virally induced mammary tumors do not necessarily acquire extra MMTV proviral DNA information, in contrast to the MMTV-induced mammary tumors, in which all tumor cells contain extra MMTV DNA information.  相似文献   

14.
Restriction mapping demonstrated the presence of several distinct proviral forms of mouse mammary tumor virus in the genome of GR mice. One of these proviruses (GR-MTV-2) was highly amplified in GR 3A cells, a cell line derived from a GR mammary tumor. By the criterion of restriction mapping, the amplified GR-MTV-2 provirus found in GR 3A cells was identical to the provirus found in M1.19 cells, a rat cell line infected with virions obtained from GR 3A culture fluid. This result clearly implies that the GR-MTV-2 provirus in GR 3A cells was transcribed into the virion-associated viral RNA genome. Cleavage of either GR 3A or M1.19 cell DNAs with the restriction enzyme Bg1 II gave rise to a 2.6 x 10(6) dalton GR-MTV-2 proviral fragment (ca. 45% of the viral genome). This fragment was isolated and mapped with thirteen restriction enzymes.  相似文献   

15.
Murine mammary tumor virus (MuMTV) was used to productively infect feline and mink cells. MuMTV "proviral" DNA could be detected in the infected cells by molecular hybridization using radioactive MuMTV complementary DNA as a probe. Kinetic analysis of MuMTV proviral DNA synthesis after infection showed that maximum MuMTV DNA synthesis was achieved by 8 h; however, this was followed by a decline in detectable proviral DNA and eventual stabilization at a lower level. MuMTV synthesis in feline cells was greatly stimulated by the synthetic glucocorticoid, dexamehtasone. On the other hand, MuMTV synthesis in mink cells was relatively at a much higher level in absence of dexamethasone and the stimulation with dexamethasone was not as marked as in the case with infected feline cells. Thermal denaturation of hybrids between MuMTV complementary DNA and infected mink cell RNA revealed no difference from homologous hybrids.  相似文献   

16.
17.
We have detected a mouse mammary tumor virus (MMTV)-specific 1.7-kilobase (kb) polyadenylated RNA in mammary glands of several mouse strains. In BALB/c mice, it is the only MMTV-specific RNA species present. C3H and GR mammary glands and tumors contain, in addition, 3.8- and 7.8-kb MMTV RNAs. Nuclease S1 analysis was performed to map 1.7-kb polyadenylated RNA. It contains predominantly long terminal repeat (LTR) sequences. The 5' end maps approximately 134 nucleotides upstream from the 3' end of the LTR. Colinearity with complete proviral DNA continues to a site about 153 nucleotides downstream from the left (5') LTR. No sequences from the middle part of proviral DNA were found. Colinearity with proviral DNA is resumed 72 nucleotides upstream from the right (3') LTR. The nucleotide sequence in this area is TTCCAGT, which is a splice acceptor consensus sequence. The anatomy of 1.7-kb RNA indicates that it may serve as a messenger for the 36,700-dalton protein encoded by the LTRs of MMTV.  相似文献   

18.
We analyzed two experimental situations to assess the role of endogenous mouse mammary tumor virus (MMTV) DNA in the genesis of mammary carcinomas. (i) GR mice carry in their germ line one or more proviruses indistinguishable by limited restriction mapping from the proviruses introduced into cells by experimental infection with the highly tumorigenic virus isolated from GR mouse milk, MMTV(GR). Most tumors arising in GR mice contain one or more proviruses at various sites in tumor DNA in addition to those present endogenously. Detection of these new proviruses is possible as a consequence of the clonal or quasiclonal character of the tumors. (ii) C3H/He mice carry three units of endogenous viral DNA, none of which resembles the DNA of the commonly encountered strains of milk-borne MMTV. Nevertheless, MMTV-associated tumors arise late in life when these animals are removed from the influence of milk-borne virus; the responsible agent, MMTV(C3Hf), can also produce tumors in BALB/c mice. We found that tumors arising in both C3Hf/He mice and BALB/c mice infected with MMTV(C3Hf) were clonal or quasiclonal and contained one or more new copies of proviral DNA at various sites in the host genome. These new proviruses were readily distinguished from the proviruses of the common milk-borne virus strains and closely resembled unit II of endogenous MMTV DNA (Cohen et al., J. Virol., 32:483-496). Thus, in both experimental systems, we found evidence for new proviruses in mammary tumors, despite the preexistence of similar or identical proviruses in the germ line. The results suggest that the repositioning of MMTV proviruses may be required for the full expression of the oncogenic potential of endogenous MMTV DNA.  相似文献   

19.
We have characterized murine mammary tumor virus (MuMTV)-specific RNA in several types of cells in which viral DNA is transcribed into RNA: cultured GR mouse mammary tumor cells, S49 lymphoma cells from BALB/c mice, lactating mammary glands from C57BL/6 mice, and mink lung cells infected in vitro with MuMTV. In all cell types studied, there are three distinct species of intracellular viral RNA, with sedimentation coefficients of 35S, 24S, and 13S (or molecular weights of 3.1 X 10(6), 1.5 X 10(6), and 0.37 X 10(6), as determined by rate-zonal sedimentation in sucrose gradients and by electrophoresis in agarose gels under denaturing conditions. These three viral RNA species appear to be present regardless of viral RNA concentration, responsiveness to glucocorticoid hormones, production of extracellular virus, and use of either endogenous or acquired MuMTV proviral DNA as template. The three viral RNAs display characteristics of mRNAs in that they are polyadenylated, associated with polyribosomes, and released from polyribosomes by treatment with EDTA; hence all three species presumably direct the synthesis of virus-coded proteins. The two larger species of viral RNA are probably responsible for synthesis of the structural proteins of the virion, but the function of the 13S RNA is not known. Both of the subgenomic RNAs contain sequences found at the 3' terminus of 35S (or genomic) RNA. However, only the 24S RNA (not the 13S RNA) contains sequences which are located at the 5' terminus of 35S RNA and are apparently transposed during RNA synthesis of maturation, as described for subgenomic mRNA's of other retroviruses.  相似文献   

20.
Mus musculus subsp. musculus (Czech II) mammary tumor DNA frequently contains an integrated proviral genome of the mouse mammary tumor virus (MMTV) within a specific 0.5-kilobase-pair region of the cellular genome (designated int-3). Viral integration at this site results in activation of expression of an adjacent cellular gene. We mapped int-3 to mouse chromosome 17 by analysis of PstI-restricted cellular DNAs from mouse-hamster somatic cell hybrids. Restriction analysis of cellular DNA from (C3H/OuJ X Czech II) X Czech II backcross mice established the gene order T-H-2-int-3. These results demonstrated that the int-3 locus is distinct from two other common integration regions for mouse mammary tumor virus (designated int-1 and int-2) in mammary tumor DNA and suggest that several cellular genes may be at risk for virally induced activation during mammary tumor development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号