首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review in this report our strategy and tactics for the design of 2-hydroxyarylidene-4-cyclopentene-1,3-diones as protein tyrosine kinase (PTK) inhibitors having low mitochondrial toxicities and/or hypoxia-targeting function. We based our synthetic design on an innovative pharmacophore, 2-methylene-4-cyclopentene-1,3-dione. We first showed the effectiveness of this pharmacophore in the development of 2-methylene-4-cyclopentene-1,3-dione as PTK inhibitor that have lower mitochondrial toxicity than the potent PTK inhibitor tyrphostin AG17. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to PTK inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17. Secondly, as a further investigation of the promising power of this 4-cyclopentene-1,3-dione as an innovative pharmacophore, we discuss our strategy of development of hypoxia-targeting PTK inhibitor TX-1123 analogues, 2-nitroimidazole-aminomethylenecyclopentenediones, such as TX-2036, for cancer treatment, especially for pancreatic cancers, which have a high level of hypoxia.  相似文献   

2.
3.
We designed and synthesized isoprene analogues of artepillin C, a major component of Brazilian propolis, and investigated the inhibitory activity on lipid peroxidation of rat liver mitochondria (RLM) and RLM toxicity based on isoprenomics. We succeeded in the synthesis of artepillin C isoprene analogues using regioselective prenylation within the range from 22% to 53% total yield. Reactivity of artepillin C and its isoprene analogues with ABTS (2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonate)) radical cations showed only a slight difference among the molecules. The isoprene side-chain elongation analogues of artepillin C showed almost the same inhibitory activity against RLM lipid peroxidation as artepillin C. Artepillin C and its isoprene analogues had very weak RLM uncoupling activity. Moreover, artepillin C and its isoprene analogues exhibited a lower inhibitory activity against adenosine 5'-triphosphate (ATP) synthesis by about two orders of magnitude than the effective inhibitory activity against RLM lipid peroxidation. From these results we conclude that artepillin C isoprene analogues could be potent lipid peroxidation inhibitors having low mitochondrial toxicity. We also conclude that elongation of the isoprene side chain of artepillin C to increase lipophilicity had little influence on the inhibitory activity toward RLM lipid peroxidation.  相似文献   

4.
Abrin B chain and trypsin inhibitor isolated from Acacia confusa (ACTI) were covalently linked to form a chimeric protein (ANB-ACTI) with N-succinimidyl-3-(-2-pyridyldithio)propionate. The chimeric protein had 31% of trypsin inhibitory activity of ACTI and 7% of hemagglutinating activity of abrin B chain, but no inhibition on protein biosynthesis. ANB-ACTI had strong inhibitory effects on the growth of sarcoma 180 cells and Hela cell culture while the mixture of an equivalent amount of free abrin B chain and ACTI did not. The results suggests that abrin B chain of chimeric protein may act as a vector to carry ACTI into the tumor cells. ACTI into the tumor cells. ACTI in the chimeric protein potentiates its antitumor activity as well as its resistance to tryptic digestion.  相似文献   

5.
4-Aryl-5-cyano-2H-1,2,3-triazoles bearing a variety of substituting groups on 4-phenyl were synthesized. The chemicals, designed as HER2 tyrosine kinase inhibitors, were screened for bioactivity of inhibiting growth of breast cancer MDA-MB-453 cells. The lowest IC(50) value of inhibiting HER2 tyrosine kinase phosphorylation in breast cancer cells is 6.6microM and the IC(50) value of cell growth inhibition is correspondingly 30.9microM. The lipophilicity of substituting groups on triazoles is the main factor to influence their bioactivities.  相似文献   

6.
Recepteur d' origine nantais (RON), a tyrosine kinase receptor, is aberrantly expressed in human tumors and promotes cancer cell invasion. RON receptor activation is also associated with resistance to tamoxifen treatment in breast cancer cells. Nrf2 is a positive regulator of cytoprotective genes. Using chromatin immunoprecipitation (ChIP) and site-directed mutagenesis studies of the RON promoter, we identified Nrf2 as a negative regulator of RON gene expression. High Nrf2 and low RON expression was observed in normal mammary tissue whereas high RON and low or undetectable expression of Nrf2 was observed in breast tumors. The Nrf2 inducer sulforaphane (SFN) as well as ectopic Nrf2 expression or knock-down of the Nrf2 negative regulator keap1, which stabilizes Nrf2, inhibited RON expression and invasion of carcinoma cells. Consequently, our studies identified a novel functional role for Nrf2 as a "repressor" and RON kinase as a molecular target of SFN, which mediates the anti-tumor effects of SFN. These results are not limited to breast cancer cells since the Nrf2 inducer SFN stabilized Nrf2 and inhibited RON expression in carcinoma cells from various tumor types.  相似文献   

7.
Little is known about the specific signaling roles of Rap2, a Ras family small GTP-binding protein. In a search for novel Rap2-interacting proteins by the yeast two-hybrid system, we isolated isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a previously described but uncharacterized isoform. Other isoforms of MAP4K4 in humans and mice are known as hematopoietic progenitor kinase (HPK)/germinal center kinase (GCK)-like kinase and Nck-interacting kinase, respectively. MAP4K4 belongs to the STE20 group of protein kinases and regulates c-Jun N-terminal kinase (JNK). MAP4K4 interacted with Rap2 through its C-terminal citron homology domain but did not interact with Rap1 or Ras. Interaction with Rap2 required the intact effector region of Rap2. MAP4K4 interacted preferentially with GTP-bound Rap2 over GDP-bound Rap2 in vitro. In cultured cells, MAP4K4 colocalized with Rap2, while a mutant MAP4K4 lacking the citron homology domain failed to do so. Furthermore, Rap2 enhanced MAP4K4-induced activation of JNK. These results suggest that MAP4K4 is a putative effector of Rap2 mediating the activation of JNK by Rap2.  相似文献   

8.
Like the previously reported 4,5,6,7-tetrabromobenzotriazole (TBBt), the structurally related 4,5,6,7-tetrabromobenzimidazole (TBBz) is a selective ATP-competitive inhibitor of protein kinase CK2 from such divergent sources as yeast, rat liver, Neurospora crassa and Candida tropicalis, with K(i) values in the range 0.5-1 microM. It is virtually inactive vs. PKA, PKC, and a very weak inhibitor of protein kinase CK1. The corresponding tetrachlorobenzimidazole (TCBz) is a much weaker inhibitor of CK2, like tetrachlorobenzotriazole (TCBt) relative to TBBt. Bearing in mind the similarity of the van der Waals radii of Br (1.95 A) and CH(3) (2.0 A), the corresponding much less hydrophobic 4,5,6,7-tetramethylbenzotriazole (TMeBt) was prepared and found to be a very weak inhibitor of CK2, as well as of CK1. An unexpected, and significant, difference between TBBt and TBBz are their inhibitory activities vs. the yeast protein kinase PK60S, which phosphorylates, both in vitro and in intact yeast cells, three of the five pp13 kDa ribosomal surface acidic proteins in yeast cells. TBBt was previously noted to be a more effective inhibitor of PK60S than of yeast CK2; by contrast, TBBz is a relatively feeble inhibitor of PK60S, hence more selective than TBBt vs. CK2 in yeast cells. TMeBt was virtually inactive vs PK60S. Like TBBt, TBBz is an additional lead compound for development of more potent inhibitors of CK2.  相似文献   

9.
The majority of cellular responses to changing environmental conditions is regulated by protein kinases. Spermatozoa have many special properties, including motility with demonstrated chemotaxis, the ability to undergo capacitation, and the acrosome reaction, which are in part controlled by extracellular signals and in which sperm kinases are considered to be involved. We have previously reported that there is a protein kinase activity, which phosphorylates the synthetic substrate poly-(Glu, Tyr) with a Km value of 2.3 μM, and is inhibited by the tyrosine kinase inhibitor tyrphostin, in the protein extract from boar spermatozoa (Berruti and Porzio, 1992: Biochim Biophys Acta 1118:149–154). Now we have demonstrated that the enzyme is cytosolic, is active as a monomer of Mr 42,000, is stimulated by Mg2+ > Mn2+ but not by Ca2+, is renaturable, and can phosphorylate native protein substrates such as microtubule-associated protein 2 (MAP2) and histone H2B both on the tyrosine and serine residues. N-terminal sequence analysis suggests that it is a novel protein. These new findings imply that the boar sperm 42 kD kinase may be a novel member of the emerging class of dual-specificity protein kinases, and they raise the intriguing question of its function in the protein kinase network mediating signal transduction in mammalian spermatozoa. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Tamoxifen (TAM) is a nonsteroidal triphenylethylene antiestrogenic drug widely used in the treatment and prevention of breast cancer. TAM brings about a collapse of the mitochondrial membrane potential. It acts both as an uncoupling agent and as a powerful inhibitor of mitochondrial electron transport chain. The effect of catechin pretreatment on the mitochondrial toxicity of TAM was studied in liver mitochondria of Swiss albino mice. TAM treatment caused a significant increase in the mitochondrial lipid peroxidation (LPO) and the protein carbonyls (PCs). It also caused a significant increase in superoxide radical production. Pretreatment of mice with catechin (40 mg/kg) showed significant protection as demonstrated by marked attenuation of increased oxidative stress parameters such LPO, PCs, and superoxide production. It also restored the decreased nonenzymatic and enzymatic antioxidants of mitochondria. The inhibitory effect of catechin on TAM-:induced oxidative damage suggests that it may have potential benefits in prevention of human diseases where reactive oxygen species have some role as causative agents.  相似文献   

11.
We have investigated here the mechanism of dephosphorylation and activation of death-associated protein kinase (DAPK) and the role of lysosome in neuroblastoma cells (SH-SY5Y) treated with mitochondrial toxins, such as MPP(+) and rotenone. Mitochondrial respiratory chain inhibitors and uncouplers decreased mitochondrial membrane potential leading to DAPK dephosphorylation and activation. The class III phosphoinositide 3-kinase inhibitors attenuated DAPK dephosphorylation induced by mitochondrial toxins. Complex I inhibition by mitochondrial toxins (e.g. MPP(+)) resulted in mitochondrial swelling and lysosome reduction. Inhibition of class III phosphoinositide 3-kinase attenuated MPP(+)-induced lysosome reduction and cell death. The role of DAPK as a sensor of mitochondrial membrane potential in mitochondrial diseases was addressed.  相似文献   

12.
Interleukin-1 (IL-1) receptor-associated kinase-4 (IRAK-4) is a serine/threonine kinase that plays an essential role in signal transduction by Toll/IL-1 receptors (TIRs). Here, we report the crystal structures of the phosphorylated human IRAK-4 kinase domain in complex with a potent inhibitor and with staurosporine to 2.0 and 2.2 A, respectively. The structures reveal that IRAK-4 has a unique tyrosine gatekeeper residue that interacts with the conserved glutamate from helix alphaC. Consequently, helix alphaC is "pulled in" to maintain the active orientation, and the usual pre-existing hydrophobic back pocket of the ATP-binding site is abolished. The peptide substrate-binding site is more open when compared with other protein kinases due to a marked movement of helix alphaG. The pattern of phosphate ligand interactions in the activation loop bears a close resemblance to that of a tyrosine kinase. Our results provide insights into IRAK-4 function and the design of selective inhibitors.  相似文献   

13.
Li J  Poi MJ  Qin D  Selby TL  Byeon IJ  Tsai MD 《Biochemistry》2000,39(4):649-657
We report the first detailed structure-function analyses of p18INK4C (p18), which is a homologue of the important tumor suppressor p16INK4A (p16). Twenty-four mutants were designed rationally. The global conformations of the mutants were characterized by NMR, while the function was assayed by inhibition of cyclin-dependent kinase 4 (CDK4). Most of these mutants have unperturbed global structures, thus the changes in their inhibitory abilities can be attributed to the mutated residues. The important results are summarized as follows: (a) some residues at loops 1 and 2, but not 3, are important for the inhibitory function of p18, similar to the results for p16; (b) two residues at the first helix-turn-helix motif and two at the third are important for inhibition; (c) while the results generally agree with the prediction based on the crystal structures of p16-CDK6 and p19-CDK6 binary complexes, there are significant differences in a few residues, suggesting that the interactions in the binary complexes may not accurately represent the interactions in the ternary complexes (in the presence of cyclin D2); (d) most importantly, the extra loop of p18 appears to contribute to the function of p18, even though the crystal structure of the p19INK4D-CDK6 complex indicates no interactions involving this loop; (e) detailed analyses of the crystal structures and the functional results suggest that there are notable differences in the interactions between different members of the INK4 family and CDKs.  相似文献   

14.
The ability of the T lymphocyte growth factor interleukin 2 (IL-2) to activate a tyrosine protein kinase in vivo was assessed by using antibodies to phosphotyrosine in conjunction with immunoblots. Treatment of the murine IL-2-dependent cytotoxic T cell line CTLL-2 with IL-2 resulted in an increase in tyrosine phosphorylation of several proteins of molecular weights ranging from 38,000 to 120,000. The tyrosine phosphorylation in the various proteins increased in a concomitant fashion and reached a maximum level within 15 min. The concentration of IL-2 required for inducing this phosphorylation was similar to that required for stimulating [3H]thymidine uptake, indicating that the increase in tyrosine phosphorylation correlated with the ability of IL-2 to stimulate the proliferation of the CTLL-2 cells. IL-2 was also found to induce the phosphorylation of proteins on tyrosine residues in short term cultures of human T lymphocytes. These results suggest that IL-2, like other polypeptide growth factors, acts by stimulating the activity of a tyrosine protein kinase.  相似文献   

15.
16.
Protein kinase CK2 is a highly pleiotropic enzyme whose high constitutive activity is suspected to be instrumental to the enhancement of the tumour phenotype and to the propagation of infectious diseases. Here we describe a novel compound, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), which is superior to the commonly used specific CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) in several respects. DMAT displays the lowest K(i) value ever reported for a CK2 inhibitor (40 nM); it is cell permeable and its efficacy on cultured cells, both in terms of endogenous CK2 inhibition and induction of apoptosis, is several fold higher than that of TBB. The selectivity of DMAT assayed on a panel of >30 protein kinases is comparable to that of TBB, with the additional advantage of being ineffective on protein kinase CK1 up to 200 microM. These properties make DMAT the first choice CK2 inhibitor for in vivo studies available to date.  相似文献   

17.
A generic high-throughput screening assay based on the scintillation proximity assay technology has been developed for protein kinases. In this assay, the biotinylated (33)P-peptide product is captured onto polylysine Ysi bead via avidin. The scintillation signal measuring the product formation increases linearly with avidin concentration due to effective capture of the product on the bead surface via strong coulombic interactions. This novel assay has been optimized and validated in 384-well microplates. In a pilot screen, a signal-to-noise ratio of 5- to 9-fold and a Z' factor ranging from 0.6 to 0.8 were observed, demonstrating the suitability of this assay for high-throughput screening of random chemical libraries for kinase inhibitors.  相似文献   

18.
Protein kinases have emerged as attractive targets for treatment of several diseases prompting large-scale phosphoproteomics studies to elucidate their cellular actions and the design of novel inhibitory compounds. Current limitations include extensive reliance on consensus predictions to derive kinase-substrate relationships from phosphoproteomics data and incomplete experimental validation of inhibitors. To overcome these limitations in the case of protein kinase CK2, we employed functional proteomics and chemical genetics to enable identification of physiological CK2 substrates and validation of CK2 inhibitors including TBB and derivatives. By 2D electrophoresis and mass spectrometry, we identified the translational elongation factor EEF1D as a protein exhibiting CK2 inhibitor-dependent decreases in phosphorylation in (32)P-labeled HeLa cells. Direct phosphorylation of EEF1D by CK2 was shown by performing CK2 assays with EEF1D -FLAG from HeLa cells. Dramatic increases in EEF1D phosphorylation following λ-phosphatase treatment and phospho- EEF1D antibody recognizing EEF1D pS162 indicated phosphorylation at the CK2 site in cells. Furthermore, phosphorylation of EEF1D in the presence of TBB or TBBz is restored using CK2 inhibitor-resistant mutants. Collectively, our results demonstrate that EEF1D is a bona fide physiological CK2 substrate for CK2 phosphorylation. Furthermore, this validation strategy could be adaptable to other protein kinases and readily combined with other phosphoproteomic methods.  相似文献   

19.
20.
We screened 1680 spatially separated compounds of a diverse combinatorial library of 1,4-benzodiazepines for their ability to inhibit the kinase activity of protein tyrosine kinases Src, Yes, Abl, Lck, Csk, and fibroblast growth factor receptor. This screening yielded novel ligands for the protein tyrosine kinase Src. In the 1, 4-benzodiazepine-2-one scaffold, the preferred substituent at position R(1) was 4-hydroxyphenylmethyl or a 3-indolemethyl derived from a tyrosine or tyrptophan used in building the benzodiazepine, while the substituent at R(2), introduced by alkylating agents, was preferably aromatic in nature. The preferred ring structure introduced on the bicyclic ring of the scaffold by acid chlorides was a p-hydroxy phenyl group. The lead compound, designated as N-L-Yaa, has a L-4-hydroxyphenylmethyl ring at R(1) and a biphenylmethyl substituent at R(2). The compound has an IC(50) of 73 microM against Src, 2- to 6-fold lower than against other protein tyrosine kinases and >10-fold lower than against other nucleotide-utilizing enzymes. The mechanism of binding of N-L-Yaa to Src is mixed against the peptidic substrate with a K(i) of 35 microM and noncompetitive against ATP-Mg with a K(i) of 17 microM. Multiple inhibition analysis of the lead compound in the presence of other competitive inhibitors demonstrated that the binding of the lead compound is nonexclusive to the other competitive inhibitor. The inhibitor was found to be nontoxic to the AFB-13-human fibroblasts cells and inhibited the colony formation of HT-29 colon adenocarcinoma cells that are dependent on Src activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号