首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial digitonin particles from mouse liver (and also from other tissues) incorporate [3H]myristic acid into a 52-kilodalton (kDa) protein in an energy-dependent manner. The 52-kDa N-myristylated protein is located inside the mitochondrial inner membrane since it is protected against proteolytic degradation in intact mitoplasts. Disruption of mitochondrial inner membrane by sonication results in severalfold higher labeling of the 52-kDa protein, further confirming that the enzyme system for protein fatty acylation as well as the 52-kDa target protein are compartmentalized inside the mitochondrial inner membrane matrix. The results of in vitro labeling of submitochondrial fractions suggest that both the 52-kDa target protein and the enzyme system for fatty acylation are in the matrix fraction, although the N-myristylated protein is found loosely associated with the inner membrane. Finally, immunoprecipitation of cytoplasmic free polysome translation products and in vitro transport of proteins into isolated mitochondria show that the 52-kDa protein is of cytoplasmic translation origin. These results demonstrate that the intramitochondrial N-myristylation of the 52-kDa protein is not translationally linked.  相似文献   

2.
Sparse-fur (spf) mutant mice with X-linked ornithine transcarbamylase (OTC) deficiency were examined for hyperammonemia and its effect on energy metabolism. We compared the levels of ammonia, glutamine, glutamate and some of the intermediates of energy metabolism in the brain and liver of spf mice with those of control mice. In spf mice we observed significant increases in ammonia, glutamine, alpha-ketoglutarate and glucose with a significant decrease in ATP, glutamate and pyruvate in both brain and liver. The redox states of the brain and liver were also altered in spf mice. The results suggest that many of the metabolic alterations seen in spf mice could be due to the elevated ammonia levels. The spf mouse may, therefore, be an ideal model for the study of the neurotoxic effects of ammonia in chronic hyperammonemic syndromes.  相似文献   

3.
Protein patterns of mitochondrial outer membrane, inner membrane, and matrix from nonsynaptic (free) mitochondria from rat cerebellum at different ages (4, 8, 12, 16, 20, and 24 months) were analyzed by gel electrophoresis. Acutel-acetylcarnitine treatment was per-formed by a single i.p. injection (100 mg/kg body weight) of the substance 60 min before the sacrifice of the animals. Different age-dependent changes were obtained for the proteins of the three fractions. The amount of some protein subunits increased and/or decreased after drug treatment. In particular, protein composition of the inner mitochondrial membrane showed significant age-related modifications. This result probably indicates differences in protein synthesis and/or turnover rates in the various mitochondrial compartments during aging. Acutel-acetylcarnitine treatment caused: a high increase in the amount of one inner membrane protein with Mw 16 kDa, at all the ages studied; a decrease in the amount of many other inner membrane proteins; modifications of some matrix proteins. Our results show that in vivo administration ofl-acetylcarnitine affects mainly the inner membrane protein composition of cerebellar mitochondria.  相似文献   

4.
The effect of hyperammonemia on plasma and urinary levels of carnitine was studied in different groups of +/Y (normal) and spf/Y (chronically hyperammonemic) mice. Experimental models of acute and subacute hyperammonemia were prepared in +/Y and spf/Y mice by the use of ammonium acetate ip injections and arginine-free diets, respectively. In acute hyperammonemia, the plasma levels of both free and acylcarnitines increased significantly whereas acyl/free carnitine ratio was decreased, indicating a mobilization of carnitine from the storage sites. The subacute hyperammonemia model showed the same tendency in respect of plasma and urinary carnitines; however, the values in plasma were more significantly different. The effect of sodium benzoate on plasma carnitine levels, during both an acute and a prolonged treatment, consisted in a significant lowering of free carnitine and a significant increase in the acyl/free carnitine ratio, in both +/Y normal and spf/Y mouse models. The changes in the urinary profile, on benzoate treatments, were not significant. These results demonstrate the individual effects of hyperammonemia and benzoate therapy on carnitine metabolism, which may be helpful in understanding and ameliorating the therapeutic approach to hereditary hyperammonemias.  相似文献   

5.
Sorting pathways of mitochondrial inner membrane proteins   总被引:14,自引:0,他引:14  
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.  相似文献   

6.
MAS6 encodes an essential inner membrane protein required for mitochondrial protein import in the yeast Saccharomyces cerevisiae (Emtage and Jensen, 1993). To identify new inner membrane import components, we isolated a high-copy suppressor (SMS1) of the mas6-1 mutant. SMS1 encodes a 16.5-kDa protein that contains several potential membrane-spanning domains. The Sms1 protein is homologous to the carboxyl-terminal domain of the Mas6 protein. Like Mas6p, Sms1p is located in the mitochondrial inner membrane and is an essential protein. Depletion of Sms1p from cells causes defects in the import of several mitochondrial precursor proteins, suggesting that Sms1p is a new inner membrane import component. Our observations raise the possibility that Sms1p and Mas6p act together to translocate proteins across the inner membrane.  相似文献   

7.
Acute regulation of steroidogenesis in steroidogenic tissue is controlled by the transfer of cholesterol from the outer to the inner mitochondrial membrane where cleavage to produce pregnenolone occurs. Hormonal stimulation of MA-10 mouse Leydig tumor cells results in a large increase in steroidogenesis and the concomitant appearance of a series of 30-kDa proteins which have been localized to the mitochondria. In the present study we have shown that the appearance of these proteins occurs in a dose-responsive manner with both human chorionic gonadotropin and cyclic AMP analog. We have also shown that while steroidogenesis is inhibited rapidly in response to a cessation of protein synthesis, the 30-kDa mitochondrial proteins remain in the mitochondria, posing a potential dilemma for arguments favoring their role in the acute regulation of steroidogenesis. We report that the 30-kDa mitochondrial proteins arise from two precursor proteins with molecular masses of 37 and 32 kDa which are also found to be associated with the mitochondria. The use of pulse-chase experiments and the inhibitors ortho-phenanthroline and carbonyl cyanide m-chlorophenylhydrazone demonstrated the precursor-product relationship between the 37-, 32-, and 30-kDa proteins. We have also demonstrated that, as shown for a number of other mitochondrial proteins, the 30-kDa proteins are transferred to the inner mitochondrial membrane by a process requiring both proteolytic removal of the targeting sequences and an electrical potential across the inner mitochondrial membrane. We propose that during this transfer contact sites form between the two mitochondrial membranes and may offer an ideal situation for the transfer of cholesterol from the outer membrane to the inner membrane by an as yet unknown mechanism. Following transfer, the 30-kDa proteins remain in the inner membrane no longer able to function in the further transfer of cholesterol, and it is the continuing synthesis and processing of more precursor proteins which provides additional substrate for steroidogenesis.  相似文献   

8.
The development of the hepatic and renal hippurate-synthesizing system, as represented by the overall reaction of the benzoyl CoA: glycine N-acyltransferase (EC 2.3.1.13) was studied in 0, 4, 8, 13, 17, 21-day and 8-week old sparse-fur (spf) mutant mice with X-linked ornithine transcarbamylase (OTC) deficiency. The enzyme system in mutant males (spf/Y) showed a retarded development in both liver and kidney cortex, which was statistically significant between 13 and 21 days of age, as compared to normal males (+/Y). Hippurate synthesis in preparations from adult (8-week old) spf/Y mice was not significantly different than the normal. Daily intraperitoneal injections of sodium benzoate in increasing concentrations (125-375 mg/kg), given between 17 and 21 days, did not cause any induction in spf/Y or +/Y mice. However, intraperitoneal sodium phenobarbital (80 mg/kg) increased the specific and total activities of the hepatic enzyme system in normal +/Y mice significantly. spf/Y tolerated a dose of 40 mg/kg only, which resulted in no significant increase of hepatic enzyme activity. The results indicate that barbiturates may induce the hippurate-synthesizing system, whereas benzoate treatment has no effect on changing its developmental profile.  相似文献   

9.
Sparse-fur (spf) mouse is the ideal animal model to study the neuropathology of congenital ornithine transcarbamylase (OTC) deficiency. Our current hypothesis implies that an ammonia-induced depletion of energy metabolism in the spf mouse, could be due to a reduction in the activities of the enzymes of the electron transport chain and a treatment with acetyl-L-carnitine could normalize this abnormality. We also hypothesized that there might be a differential degree of inhibition in synaptosomal and non-synaptic mitochondria, for the enzymes of the electron transport chain, caused by congenital hyperammonemia. We have therefore measured the activities of NADH-cytochrome C oxidoreductase, succinate cytochrome C oxidoreductase and cytochrome C oxidase in synaptosomes and non-synaptic mitochondria, isolated from spf mice and CD-1 controls with and without acetyl-L-carnitine treatment. Our results indicate a significant reduction (19–34%) in the activities of these complexes in synaptosomes in untreated spf mice, whereas in non-synaptic mitochondria, there was a tendency for the activities to decrease. Acetyl-L-carnitine treatment enhanced these activities (15–64%) for all the three enzyme complexes and its effect was more prominent on succinate cytochrome C oxidoreductase activity (64%). These studies point out that: (a) ammonia-induced disturbances in the energy metabolism could be more pronounced in neuronal mitochondria, and (b) the effect of acetyl-L-carnitine on the restoration of cerebral ATP in hyperammonemia could be through an enhancement of the activities of various electron transport chain enzymes.  相似文献   

10.
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.  相似文献   

11.
Tail-anchored (TA) proteins have a single C-terminal transmembrane domain, making their biogenesis dependent on posttranslational translocation. Despite their importance, no dedicated insertion machinery has been uncovered for mitochondrial outer membrane (MOM) TA proteins. To decipher the molecular mechanisms guiding MOM TA protein insertion, we performed two independent systematic microscopic screens in which we visualized the localization of model MOM TA proteins on the background of mutants in all yeast genes. We could find no mutant in which insertion was completely blocked. However, both screens demonstrated that MOM TA proteins were partially localized to the endoplasmic reticulum (ER) in ∆spf1 cells. Spf1, an ER ATPase with unknown function, is the first protein shown to affect MOM TA protein insertion. We found that ER membranes in ∆spf1 cells become similar in their ergosterol content to mitochondrial membranes. Indeed, when we visualized MOM TA protein distribution in yeast strains with reduced ergosterol content, they phenocopied the loss of Spf1. We therefore suggest that the inherent differences in membrane composition between organelle membranes are sufficient to determine membrane integration specificity in a eukaryotic cell.  相似文献   

12.
13.
Sparse-fur mice which are deficient in ornithine transcarbamylase, the second-step enzyme in the urea cycle, were examined for hyperammonemia and its relationship with encephalopathy. We compared amino acid concentrations in the serum and brain of spf mice with those of control mice. Unlike hepatic encephalopathy we could not find marked amino acid changes in the serum of spf mice besides low levels of citrulline and arginine. But in the brain of spf mice, glutamine was increased strikingly during hyperammonemia, and a concomitant accumulation of large neutral amino acids such as tyrosine, phenylalanine, methionine, and histidine was observed. The accumulation of these large neutral amino acids in the brain was not influenced by 24-hr fasting which caused increases in branched chain amino acids in the serum. From these results, we conclude that the accumulation of the large neutral amino acid in the brain of hyperammonemic state is caused by uptake of ammonia in the brain and the subsequent accumulation of glutamine, but is not influenced by a decreased ratio of branched chain amino acids to aromatic amino acids in the serum.  相似文献   

14.
Mitochondrial protein import   总被引:60,自引:0,他引:60  
Most mitochondrial proteins are synthesized as precursor proteins on cytosolic polysomes and are subsequently imported into mitochondria. Many precursors carry amino-terminal presequences which contain information for their targeting to mitochondria. In several cases, targeting and sorting information is also contained in non-amino-terminal portions of the precursor protein. Nucleoside triphosphates are required to keep precursors in an import-competent (unfolded) conformation. The precursors bind to specific receptor proteins on the mitochondrial surface and interact with a general insertion protein (GIP) in the outer membrane. The initial interaction of the precursor with the inner membrane requires the mitochondrial membrane potential (delta psi) and occurs at contact sites between outer and inner membranes. Completion of translocation into the inner membrane or matrix is independent of delta psi. The presequences are cleaved off by the processing peptidase in the mitochondrial matrix. In several cases, a second proteolytic processing event is performed in either the matrix or in the intermembrane space. Other modifications can occur such as the addition of prosthetic groups (e.g., heme or Fe/S clusters). Some precursors of proteins of the intermembrane space or the outer surface of the inner membrane are retranslocated from the matrix space across the inner membrane to their functional destination ('conservative sorting'). Finally, many proteins are assembled in multi-subunit complexes. Exceptions to this general import pathway are known. Precursors of outer membrane proteins are transported directly into the outer membrane in a receptor-dependent manner. The precursor of cytochrome c is directly translocated across the outer membrane and thereby reaches the intermembrane space. In addition to the general sequence of events which occurs during mitochondrial protein import, current research focuses on the molecules themselves that are involved in these processes.  相似文献   

15.
Taking advantage of the unique topology of oxidase assembly 1 (Oxa1) protein, a mitochondrial inner membrane protein with N (intermembrane space)-C (matrix) orientation, we explored the usefulness of the protein as a marker for submitochondrial protein localization. Mammalian Oxa1 protein exhibited different proteolytic patterns depending on mitochondrial membrane integrity, and in mitochondria with a disrupted outer membrane and outer and inner membranes, the proteolytic patterns of Oxa1 protein were consistent with those of mitochondrial intermembrane space and matrix marker proteins, respectively, suggesting that Oxa1 protein, a single molecule, can serve as a versatile submitochondrial localization marker that doubles as a membrane integrity marker.  相似文献   

16.
Cyclophilins are a family of cyclosporin-A-binding proteins which catalyse rotation about prolyl peptide bonds. A mitochondrial isoform in mammalian cells, cyclophilin D, is a component of the permeability transition pore that is formed by the adenine nucleotide translocase and the voltage-dependent anion channel at contact sites between the inner and outer membrane. This study investigated the submitochondrial location of cyclophilin D by following the fate of radiolabelled protein following import. Precursor [(35)S]cyclophilin D was expressed in vitro from a PCR-generated cDNA. The precursor was imported by rat heart mitochondria and processed in a single step to a 21-kDa protein that was identical (SDS/PAGE) to an in vitro expressed mature protein and a cyclophilin D purified from rat heart mitochondria. No further modification of the mature protein could be demonstrated. Fractionation of mitochondria following import established that cyclophilin D locates only to the matrix. It is concluded that cyclophilin D binding to the permeability transition pore must occur at the inner face of the mitochondrial inner membrane.  相似文献   

17.
There is substantial evidence that hyperammonemia is one of the main factors contributing to the neurological alterations found in hepatic encephalopathy. The mechanisms by which chronic moderate hyperammonemia affects brain function involves alterations in neurotransmission at different steps. This article reviews the effects of hyperammonemia on phosphorylation of key brain proteins involved in neurotransmission (the microtubule-associated protein (MAP-2), Na+/K+-ATPase and NMDA receptors). The physiological function of these proteins is modulated by phosphorylation and its altered phosphorylation in hyperammonemia may contribute to impairment of neurotransmission. The effects of chronic hyperammonemia on signal transduction pathways associated to glutamate receptors, such as the glutamate-nitric oxide (NO)-cGMP pathway, are also reviewed. The possible contribution of the impairment of this pathway in brain in vivo to the neurological alterations present in patients with hepatic encephalopathy is discussed.  相似文献   

18.
The mitochondrial inner membrane contains two separate translocons: one required for the translocation of matrix-targeted proteins (the Tim23p-Tim17p complex) and one for the insertion of polytopic proteins into the mitochondrial inner membrane (the Tim54p-Tim22p complex). To identify new members of the Tim54p-Tim22p complex, we screened for high-copy suppressors of the temperature-sensitive tim54-1 mutant. We identified a new gene, TIM18, that encodes an integral protein of the inner membrane. The following genetic and biochemical observations suggest that the Tim18 protein is part of the Tim54p-Tim22p complex in the inner membrane: multiple copies of TIM18 suppress the tim54-1 growth defect; the tim18::HIS3 disruption is synthetically lethal with tim54-1; Tim54p and Tim22p can be coimmune precipitated with the Tim18 protein; and Tim18p, along with Tim54p and Tim22p, is detected in an approximately 300-kDa complex after blue native electrophoresis. We propose that Tim18p is a new component of the Tim54p-Tim22p machinery that facilitates insertion of polytopic proteins into the mitochondrial inner membrane.  相似文献   

19.
N K Bhat  N G Avadhani 《Biochemistry》1985,24(27):8107-8113
An in vitro system reconstituted with mouse liver polysome translation products was used to study the nature of polypeptide species imported into mitochondria from different mouse tissues such as liver, kidney, brain, and heart, as well as from Ehrlich ascites, Novikoff hepatoma, and Morris hepatoma 3924A tumor lines. Mouse hepatic mitochondria import a number of proteins including 160-kilodalton (kDa) carbamoyl-phosphate synthetase I (CPS-I). Two other proteins of 63 and 57 kDa of unknown function are also imported as major components by mouse liver mitochondria. Under these in vitro conditions, however, mitochondria from non-CPS-I expressing tissues such as brain, kidney, and heart failed to import and process the precursor forms of CPS-I (pCPS-I). Furthermore, mitochondria from three different tumor lines (Novikoff hepatoma, Morris hepatoma, and Ehrlich ascites) containing negligible CPS-I activity were also unable to import and process pCPS-I to any significant level. Similarly, the 63-kDa protein was selectively transported into liver and kidney mitochondria and also into Ehrlich ascites mitochondria at reduced levels, but not into mitochondria from heart and brain. Nevertheless, the 57-kDa protein and a number of proteins of less than 45 kDa are transported efficiently by all of the mitochondrial types studied. These results provide evidence for tissue- or cell-specific selectivity at the mitochondrial membrane level for the transport of some proteins. The transports of 63- and 57-kDa proteins are differentially inhibited by mouse liver mitochondrial matrix and membrane fractions, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
BACKGROUND: The mouse strain sparse fur with abnormal skin and hair (spf(ash)) is a model for the human ornithine transcarbamylase (OTC) deficiency, an X-linked inherited urea cycle disorder. The spf(ash) mouse carries a single base-pair mutation in the OTC gene that leads to the production of OTC enzyme at 10% of the normal level. MATERIALS AND METHODS: Recombinant adenoviruses carrying either mouse (Ad.mOTC) or human (Ad.hOTC) OTC cDNA were injected intravenously into the spf(ash) mice. Expression of OTC enzyme precursor and its translocation to mitochondria in the vector-transduced hepatocytes were analyzed on an ultrastructural level. Liver OTC activity and mitochondrial OTC concentration were significantly increased (300% of normal) in mice treated with Ad.mOTC and were moderately increased in mice receiving Ad.hOTC (34% of normal). The concentration and subcellular location of OTC and associated enzymes were studied by electron microscope immunolocalization and quantitative morphometry. RESULTS: Cytosolic OTC concentration remained unchanged in Ad.mOTC-injected mice but was significantly increased in mice receiving Ad.hOTC, suggesting a block of mitochondria translocation for the human OTC precursor. Mitochondrial ATPase subunit c [ATPase(c)] was significantly reduced and mitochondrial carbamy delta phosphate synthetase I (CPSI) was significantly elevated in spf(ash) mice relative to C3H. In Ad.mOTC-treated mice, the hepatic mitochondrial concentration of ATPase(c) was completely normalized and the CPSI concentration was partially corrected. CONCLUSIONS: Taken together, we conclude that newly synthesized mouse OTC enzyme was efficiently imported into mitochondria following vector-mediated gene delivery in spf(ash) mice, correcting secondary metabolic alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号