首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sarcoplasmic reticulum vesicles rendered leaky by exposure to alkaline pH, like intact vesicles, catalyze a rapid Mg2+-dependent exchange of oxygens of medium Pi with water. The exchange with 10 mM Pi is strongly inhibited by 0.15 mM Ca2+. Upon addition and hydrolysis of ITP or ATP, a rapid phosphate-oxygen exchange is observed even with 0.15 mM Ca2+ present and a definite but smaller exchange at 8 mM Ca2+. Oxygen exchange per Pi formed is greater with ITP than with ATP. When no Pi is initially present, the extent of oxygen exchange is increased with time of incubation as Pi is formed. With 18O-labeled Pi present, ATP hydrolysis accelerates 18O loss. The results show that much of the oxygen exchange occurs as a result of reversible binding of medium Pi. Thus the binding and cleavage of ITP or ATP overcomes the Ca2+ inhibition of the medium Pi in equilibrium HOH exchange. Such findings support the concept that the cleavage cycle includes a transient conformational form which can reversibly react with Pi to give a phosphoryl enzyme and resultant oxygen exchange or in a rate-limiting step decay to a form with high Ca2+ and NTP affinity.  相似文献   

2.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle are able to accumulate Ca2+ or Sr2+ at the expense of ATP hydrolysis. Depending on the conditions used, vesicles loaded with Ca2+ can catalyze either an ATP in equilibrium Pi exchange or the synthesis of ATP from ADP and Pi. Both reactions are impaired in vesicles loaded with Sr2+. The Sr2+ concentration required for half-maximal ATPase activity increases from 2 microM to 60-70 microM when the Mg2+ concentration is raised from 0.5 to 50 mM. The enzyme is phosphorylated by ATP in the presence of Sr2+. The steady state level of phosphoenzyme varies depending on both the Sr2+ and Mg2+ concentrations in the medium. Phosphorylation of the enzyme by Pi is inhibited by both Ca2+ and Sr2+. In the presence of 2 and 20 mM Mg2+, half-maximal inhibition is attained in the presence of 4 and 8 microM Ca2+ or in the presence of 0.24 mM and more than 2 mM Sr2+, respectively. After the addition of Sr2+, the phosphoenzyme is cleaved with two different rate constants, 0.5-1.5 s-1 and 10-18 s-1. The fraction of phosphoenzyme cleaved at a slow rate is smaller the higher the Sr2+ concentration in the medium. Ca2+ inhibition of enzyme phosphorylation by Pi is overcome by the addition of ITP. This is not observed when Ca2+ is replaced by Sr2+.  相似文献   

3.
The effects of aromatic compounds in sarcoplasmic reticulum Ca2+-ATPase were investigated. The solubility of the drugs in various organic solvents and water was measured. The ratio between the solubility in organic solvents and that in water (distribution coefficient) was used as an index of their hydrophobicity. The order found was triphenylphosphine greater than diphenylamine greater than 3-nitrophenol greater than 4-nitrophenol greater than 1,3-dihydroxybenzene. The effects observed on the Ca2+-ATPase were correlated with hydrophobicity of the drugs, activation and inhibition being obtained at a lower concentration the greater the distribution coefficient of the drug into organic solvent. In leaky vesicles, the effects of each compound on the ATPase activity varied depending on the Ca2+ concentration in the medium: it inhibited in the presence of 5 microM Ca2+ and activated when the Ca2+ concentration was raised to 2 mM. In intact vesicles, 3- and 4-nitrophenol, diphenylamine, and triphenylphosphine enhanced both the rate of ATP hydrolysis and the amount of Ca2+ accumulated by the vesicles. These four drugs inhibited Ca2+ uptake when ITP was used as substrate. 1,3-Dihydroxybenzene enhanced the amount of Ca2+ accumulated by the vesicles regardless of whether ATP or ITP was the substrate. All five compounds inhibited the phosphorylation of the enzyme by Pi, the efflux of Ca2+, and the synthesis of ATP measured during the reversal of the Ca2+ pump. The results indicate that the hydrophobic character of various organic compounds determines their access to sensitive domains of the membrane-bound calcium pump. Additional specific effects are then produced, depending on the structure of each compound.  相似文献   

4.
The sarcoplasmic reticulum Ca2+-ATPase is able to cleave ATP through two different catalytic routes. In one of them, a part of the chemical energy derived from ATP hydrolysis is used to transport Ca2+ across the membrane and part is dissipated as heat. In the second route, the hydrolysis of ATP is completed before Ca2+ transport and all the energy derived from ATP hydrolysis is converted into heat. The second route is activated by the rise of the Ca2+ concentration in the vesicle lumen. In vesicles derived from white skeletal muscle the rate of the uncoupled ATPase is several-fold faster than the rate of the ATPase coupled to Ca2+ transport, and this accounts for both the low Ca2+/ATP ratio usually measured during transport and for the difference of heat produced during the hydrolysis of ATP by intact and leaky vesicles. Different drugs were found to selectively inhibit the uncoupled ATPase activity without modifying the activity coupled to Ca2+ transport. When the vesicles are actively loaded, part of the Ca2+ accumulated leaks to the medium through the ATPase. Heat is either produced or released during the leakage, depending on whether or not the Ca2+ efflux is coupled to the synthesis of ATP from ADP and Pi.  相似文献   

5.
The ratio between Ca2+ uptake and Ca(2+)-dependent ATP hydrolysis measured in sarcoplasmic reticulum vesicles of rabbit skeletal muscle was found to vary greatly depending on the concentrations of oxalate or Pi used. In the presence of 5 mM oxalate, 20 mM Pi, and 1 mM Pi, the ratios found were in the range of 1.4-2.3, 0.6-0.8, and 0.01-0.10, respectively. The rates of Ca2+ exchange and ATP synthesis were measured at the steady state by adding trace amounts of 45Ca and 32Pi, after the vesicles had been loaded with Ca2+. In the presence of 1 mM Pi, 10 mM MgCl2, and 0.2 mM CaCl2, the ratio between Ca2+ exchange and ATP synthesis varied from 9 to 14. This ratio approached two when Ca2+ in the medium was reduced to a very low level, or when in the presence of Ca2+, dimethyl sulfoxide was added to the assay medium, or when the Pi concentration was raised from 1 to 20 mM. A ratio of two was also measured when the steady state was attained using ITP instead of ATP. In all the conditions that led to a ratio close to two, there was an increase in the fraction of enzyme phosphorylated by Pi. It is proposed that the coupling between Ca2+ translocation and ATP hydrolysis or synthesis is modulated by the phosphorylation of the ATPase by Pi.  相似文献   

6.
The membrane sidedness of Pi interaction in reactions which characterize reversal of the Ca2+ pump of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle was investigated. Vesicles previously loaded with calcium [32P]phosphate were incubated with 0.1 mM ADP and different concentrations of nonradioactive Pi. Alternatively, vesicles loaded with nonradioactive calcium phosphate were incubated in a medium containing 32Pi. The rates of Ca2+ efflux and ATP synthesis were siginficantly activated only when Pi was included in the assay medium. Although the Pi contained by the vesicles crosses the membrane at a rate proportional to the Ca2+ efflux, [gamma-32P]ATP was synthesized only when 32Pi interacted with the outer surface of the membrane. Similarly, ATP in equilibrium 32Pi or ITP in equilibrium 32Pi exchange could be measured only when the external pool of Pi was labeled. Both for ATP synthesis and for the ITP in equilibrium Pi exchange reaction, membrane phosphorylation by 32Pi was negligible unless the external pool of Pi was labeled. The ionophore X-537 A increased the rate of Ca2+ efflux but inhibited the synthesis of ATP. During reversal of the Ca2+ pump, Pi apparently interacts with the membrane only at the outer surface, and at a site different from that where Ca2+ crosses the membrane.  相似文献   

7.
The role of the Ca2+ concentration gradient in ATP synthesis and membrane phosphorylation by Pi was investigated in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. The Pi concentration required to attain 50% of the maximal membrane phosphorylation varies significantly in the pH range of 5.5 to 4.5, the optimal being at pH 6.0. In the pH range of 6.0 to 7.0, this concentration of Pi was 4- to 10-fold higher in empty vesicles than in vesicles loaded with calcium phosphate, i.e. having transmembrane Ca2+ concentration gradient. ATP, ADP, and Ca2+ inhibit the membrane phosphorylation by Pi, the inhibition being greater at pH 7.0 than at pH 6.0. The pH profile for ATP synthesis shows a higher optimum than for membrane phosphorylation. The optimum pH for synthesis, but not for phosphorylation depends on whether the vesicles were previously loaded with calcium phosphate or with calcium oxalate. Addition of Ca2+ to the assay medium inhibits the extent of membrane phosphorylation and the rate of ATP synthesis to different extents. Evidence is presented that the rate of membrane phosphorylation by Pi is higher than the rate by which the phosphoprotein transfers its pohsphate to ADP for the ATP synthesis.  相似文献   

8.
Membrane phosphorylation and nucleoside triphosphatase activity of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle were studied using ATP and ITP as substrates. The Ca2+ concentration was varied over a range large enough to saturate either the high affinity Ca2+-binding site or both high and low affinity binding sites. In intact vesicles, which are able to accumulate Ca2+, the steady state level of enzyme phosphorylated by either ATP or ITP is already high in 0.02 mM Ca2+ and does not vary as the Ca2+ concentration is increased to 10 mM. Essentially the same pattern of membrane phosphorylation by ATP is observed when leaky vesicles, which are unable to accumulate Ca2+, are used. However, for leaky vesicles, when ITP is used as substrate, the phosphoenzyme level increases 3- to 4-fold when the Ca2+ concentration is raised from 0.02 to 20 mM. When Mg2+ is omitted from the assay medum, the degree of membrane phosphorylation by ATP varies with Ca2+ in the same way as when ITP is used in the presence of Mg2+. Membrane phosphorylation of leaky vesicles by either ATP or ITP is observed in the absence of added Mg2+. When these vesicles are incubated in media containing ITP and 0.1 mM Ca2+, addition of Mg2+ up to 10 mM simultaneously decreases the steady state level of phosphoenzyme and increases the rate of ITP hydrolysis. When ATP is used, the addition of 10 mM Mg2+ increases both the steady state level of phosphoenzyme and the rate of ATP hydrolysis. When the Ca2+ concentration is raised to 10 or 20 mM, the degree of membrane phosphorylation by either ATP or ITP is maximal even in the absence of added Mg2+ and does not vary with the addition of 10 mM Mg2+. In these conditions the ATPase and ITPase activities are activated by Mg2+, although not to the level observed in 0.1 mM Ca2+. An excess of Mg2+ inhibits both the rate of hydrolysis and membrane phosphorylation by either ATP or ITP.  相似文献   

9.
Calcium and proton dependence of sarcoplasmic reticulum ATPase   总被引:6,自引:1,他引:5       下载免费PDF全文
The influence of Ca2+ and H+ concentrations on the sequential reactions of the ATPase cycle was studied by a series of pre-steady state and steady state experiments with sarcoplasmic reticulum vesicles. It is shown that H+ competition with calcium binding results in a reduced population of activated enzyme, which is manifested by a lower level of phosphorylated enzyme intermediate following addition of ATP. Further effects of Ca2+ and H+ are demonstrated on the progression of the phosphoenzyme through the reaction cycle and on the final hydrolytic cleavage of Pi. The overall dependence of steady state ATP flux on Ca2+ and H+ concentrations in leaky vesicles is expressed by a series of curves showing that as the H+ concentration is raised higher Ca2+ concentrations are required to obtain half-maximal ATP fluxes. At saturating Ca2+, maximal ATP fluxes are observed at an intermediate H+ concentration (pH 7.2), while lower levels are obtained as the H+ concentration is reduced (to pH 8) or increased (to pH 6). A preliminary model is then proposed based on the presence of two interacting domains permitting competitive binding of Ca2+ or H+, per each catalytic site undergoing phosphorylation by ATP. The model considers three main states and thirteen substates (depending on the occupancy of the binding sites in each state by Ca2+, H+, or neither) in the progression of the ATP cycle, coupled to transport of Ca2+ and counter transport of H+ in leaky vesicles. Considering the preliminary nature of the model and the experimental scatter, a rather satisfactory agreement is noted between a family of curves generated by theoretical analysis and the ATP flux curves obtained experimentally.  相似文献   

10.
The hydrophobic nature of the active site of two energy-transducing ATPases was explored by comparing interactions between Pi and each of three hydrophobic drugs in the absence and presence of organic solvents. The drugs tested were the Fe . bathophenanthroline complex and the anticalmodulin drugs, calmidazolium and trifluoperazine. All inhibit the Pi in equilibrium with ATP exchange reaction catalyzed by submitochondrial particles and the ATPase activity of both submitochondrial particles and soluble F1 ATPase. The inhibition by the three drugs is reversed by either raising the Pi concentration or by adding organic solvent (dimethylsulfoxide, ethyleneglycol or methanol) to the medium. The inhibition of the Pi in equilibrium with ATP exchange by trifluoperazine becomes more pronounced when the electrochemical proton gradient formed across the membrane of the submitochondrial particles is decreased by the addition to the medium of the proton ionophore carbonylcyanide p-trifluoromethoxyphenylhydrazone. The ATPase activity and the Ca2+ uptake by sarcoplasmic reticulum vesicles are inhibited by the Fe . bathophenanthroline complex, calmidazolium and trifluoperazine. Phosphorylation of the ATPases by Pi, synthesis of ATP from ADP and Pi and the fast efflux of Ca2+ observed during reversal of the Ca2+ pump are inhibited by the three drugs. The inhibition is reversed by raising the concentration of Pi or dimethylsulfoxide. The three drugs tested appear to compete with Pi for a common binding site on the Ca2+-ATPase. The data presented are interpreted according to the proposal that the catalytic site of an enzyme involved in energy transduction undergoes a hydrophobic-hydrophilic transition during the catalytic cycle.  相似文献   

11.
The antioxidant nordihydroguaiaretic acid (NDGA) inhibited the different sarco/endoplasmic reticulum Ca2+-ATPase isoforms found in skeletal muscle and blood platelets. For the sarcoplasmic reticulum, but not for the blood platelets Ca2+-ATPase, the concentration of NDGA needed for half-maximal inhibition was found to vary depending on the substrate used and its concentration in the assay medium. The phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase by ATP and by Pi were both inhibited by NDGA. In leaky vesicles, measurements of the ATP Pi exchange showed that NDGA increases the affinity for Ca2+ of the E2 conformation of the enzyme, which has low affinity for Ca2+. The effects of NDGA on the Ca2+-ATPase were not reverted by the reducing agent dithiothreitol nor by the lipid-soluble antioxidant butylated hydroxytoluene.  相似文献   

12.
The effect of arsenate on the partial reactions of the catalytic cycle of the Ca2+ ATPase of skeletal muscle of sarcoplasmic reticulum was studied. With the use of native vesicles it was found that arsenate accelerates the rate of ITP hydrolysis and inhibits both Ca2+ or Sr2+ uptake. These effects were not observed when ATP was used as substrate or, with the use of ITP, when leaky vesicles were assayed. Activation of ITP hydrolysis is related to an increase of the enzyme's apparent affinity for ITP. Arsenate increases the steady-state level of the phosphoenzyme formed from ITP. This depends on the concentration of both Pi and Ca2+, in the medium. Ca2+ and Sr2+ efflux were accelerated by arsenate. The fast Ca2+ efflux promoted by arsenate is impaired by external Ca2+. Arsenate competes with Pi for the phosphorylating site of the enzyme.  相似文献   

13.
The effect of pH on the Ca2+-binding sites of high and low affinity, located respectively on the outer and inner surfaces of the sarcoplasmic reticulum membrane, was investigated using intact and leaky sarcoplasmic reticulum vesicles. With the use of intact vesicles, different pH profiles of membrane phosphorylation and rates of nucleoside triphosphate hydrolysis were obtained depending on the assay temperature, on the Ca2+ concentration, and on whether ATP or ITP was used as substrate. The different pH profiles were related to the amount of Ca2+ accumualted by the vesicles, i.e., to different degrees of saturation of the inner, low-affinity Ca2+-binding site. With the use of leaky vesicles, the saturation of the two Ca2+-binding sites could be controlled more precisely since the Ca2+ concentration on both sides of the membrane was equal to the Ca2+ concentration of the assay medium. Using leaky vesicles and measuring the rates of nucleotide hydrolysis, nucleotide-phosphate exchange and membrane phosphorylation by nucleotide as an indication of the degree of saturation of the Ca2+-binding sites, we observed that the affinity of both the high- and low-affinity sites increased three to four orders of magnitude when the pH of the assay medium was increased from 6.1 to 8.65.  相似文献   

14.
At high concentrations of ATP, ATP hydrolysis and Ca2+ transport by the (Ca2+ + MG2+)-ATPase of intact sarcoplasmic reticulum vesicles exhibit a secondary activation that varies with the extent of back-inhibition by Ca2+ accumulated within the vesicles. When the internal ionized Ca2+ is clamped at low and intermediate levels by the use of Ca-precipitating anions, the apparent Km values for activation by ATP are lower than in fully back-inhibited vesicles (high internal Ca2+). In leaky vesicles unable to accumulate Ca2+, raising Ca2+ in the assay medium from 20-30 microM to 5 mM abolishes the activation of hydrolysis by high concentrations of ATP. The level of [32P]phosphoenzyme formed during ATP hydrolysis from [32P]phosphate added to the medium also varies with the extent of back-inhibition; it is highest when Ca2+ is raised to a level that saturates the internal, low-affinity Ca2+ binding sites. In intact vesicles, increasing the ATP concentration from 10 to 400 microM competitively inhibits the reaction of inorganic phosphate with the enzyme but does not change the rate of hydrolysis. In a previous report (De Meis, L., Gomez-Puyou, M.T. and Gomez-Puyou, A. (1988) Eur. J. Biochem. 171, 343-349), it has been shown that the hydrophobic molecules trifluoperazine and iron bathophenanthroline compete for the catalytic site of the Pi-reactive form of the enzyme. Here it is shown that inhibition of ATP hydrolysis by these compounds is reduced or abolished when Ca2+ binds to the low-affinity Ca2+ binding sites of the enzyme. Since inhibition by these agents is indifferent to activation of hydrolysis by high concentrations of ATP, it is suggested that the second Km for ATP and the inhibition by hydrophobic molecules involve two different Ca-free forms of the enzyme.  相似文献   

15.
The effects of the three hydrophobic molecules triphenylphosphine, trifluoperazine and 3-nitrophenol on Ca2+ uptake and ATPase activity in sarcoplasmic reticulum vesicles was investigated. When ATP was the substrate, triphenylphosphine (3 microM) increased the amount of Ca2+ accumulated by the vesicles. At high concentrations triphenylphosphine inhibited Ca2+ uptake. This effect varied depending on the ATP concentration and the type of nucleotide used. With ITP there was only inhibition and no activation of Ca2+ uptake by triphenylphosphine. On the other hand, trifluoperazine inhibited Ca2+ accumulation regardless of whether ATP or ITP was used as substrate. When 5 mM oxalate was included in the medium in order to avoid binding of Ca2+ to the low-affinity Ca2(+)-binding sites of the enzyme, both stimulation by triphenylphosphine and inhibition by trifluoperazine were reduced. In leaky vesicles at low Ca2+ concentrations, triphenylphosphine and 3-nitrophenol were competitive inhibitors of ATPase activity at the regulatory site of the enzyme (0.1-1 mM ATP). A striking difference was observed when both the high- and low-affinity Ca2(+)-binding sites were saturated. In this condition, triphenylphosphine and 3-nitrophenol promoted a 3-4-fold increase in the apparent affinity for ATP at its regulatory site.  相似文献   

16.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

17.
The Ca(2+)-stimulated adenosine 5'-triphosphate-orthophosphate (ATP in equilibrium with 32Pi) exchange reaction was studied using a vesicular preparation derived from plasma membrane of kidney proximal tubules. With native inside-out vesicles, ATP in equilibrium with 32Pi was stimulated by micromolar Ca2+ concentrations. Treatment of the vesicles with the Ca2+ ionophore A23187 that abolished Ca2+ accumulation, strongly inhibited ATP in equilibrium with 32Pi. When Ca(2+)-ATPase was solubilized with the nonionic detergent octaethylene glycol mono n-dodecyl ether, maximal activation of ATP in equilibrium with 32Pi required millimolar Ca2+ concentrations. These Ca2+ concentrations inhibited ATP hydrolysis. ATP in equilibrium with 32Pi exhibited a Michaelian dependence on Pi and Mg2+, was stimulated by ATP, and depended on the ATP/ADP ratio. ATP in equilibrium with 32Pi was modified by the osmolytes urea, trimethylamine-N-oxide, and sucrose, which are representative of the methylamines and polyols that normally accumulate in renal tissue. These compounds did not modify the apparent affinity for Pi; they affected the response to ADP in the same fashion as the overall rate of ATP in equilibrium 32Pi, and their effects depended on medium pH. These data show that the Ca(2+)-ATPase from plasma membrane kidney proximal tubules can operate simultaneously in forward and backward directions. They also show that ATP in equilibrium with 32Pi is modulated by the ligands Ca2+, ATP, ADP, Pi, Mg2+, and H+, and by organic solutes found in renal tissue.  相似文献   

18.
The effect of low concentrations of Triton X-100, below that required for solubilization, on the properties of the Ca2+-ATPase of sarcoplasmic reticulum has been investigated. The changes observed have been compared with the changes produced on solubilization of the vesicles at higher concentrations of detergent. In the range 0.02-0.05% (w/v) Triton X-100, concentrations which did not solubilize the vesicles but completely inhibit ATP-mediated Ca2+ accumulation, 8-16 mol of detergent/mol of ATPase was associated with the vesicles. This amount of Triton X-100 altered equilibrium Ca2+ binding and Ca2+ activation of p-nitrophenyl phosphate and of ATP hydrolysis in a manner which lowered the apparent Ca2+ cooperatively (nH = 1 or less), and which increased the K0.5(Ca) value 20-fold. These changes in Ca2+ binding and activation parameters were associated with a 90% lower Ca2+-induced change in fluorescence of fluorescein isothiocyanate modified enzyme. The rates of p-nitrophenyl phosphate and of ATP hydrolysis, at saturating Ca2+ concentrations, were about half that of detergent-free vesicles. The rate constant for phosphoenzyme hydrolysis in the absence of Ca2+, calculated from medium Pi in equilibrium HOH exchange and phosphoenzyme measurements, was lowered from 38 to 11 s-1. The steady-state level of phosphoenzyme formed from Pi in the absence of Ca2+ was slightly increased up to 0.02% Triton X-100 and then decreased about half at 0.05%. The synthesis of ATP in single turnover type experiments was not affected by detergent binding. Pi in equilibrium ATP exchange was inhibited 65%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

20.
Oxygen exchange between (18O4)Pi in the medium and water accompanies ATP hydrolysis catalyzed by the calcium-regulated MgATPase of vertebrate skeletal muscle. Exchange was observed in chemically skinned fibers from rabbit psoas muscle held isometrically and activated by 30 microM free Ca2+. The rate of exchange was approximately proportional to Pi concentration (up to 10 mM) and was characterized by an apparent second order rate constant greater than or equal to 475 M-1 S-1 (pH 7.1, ionic strength 0.2 M, 22 degrees C). Much less exchange occurred in the absence of Ca2+ or when ATP was replaced by ADP. It has been inferred from mechanical experiments that Pi can bind to a force-generating ADP-bound state of actomyosin with resultant suppression of force (Hibberd, M. G., Dantzig, J. A., Trentham, D. R., and Goldman, Y. E. (1985) Science 228, 1317-1319). The oxygen exchange results support this inference by providing direct evidence that Pi in the medium binds at the ATPase catalytic site in activated isometric fibers. The inter-relationship of these two effects involving Pi on mechanochemical coupling in muscle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号