首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercellular exchange of MHC molecules has been reported between many cells, including professional and nonprofessional APCs. This phenomenon may contribute to T cell immunity to pathogens. In this study, we addressed whether the transfer of MHC class I:peptide complexes between cells plays a role in T cell responses and compare this to conventional cross-presentation. We observed that dsRNA-matured bone marrow-derived dendritic cells (BMDCs) acquired peptide:MHC complexes from other BMDCs either pulsed with OVA(257-264) peptide, soluble OVA, or infected with a recombinant adenovirus expressing OVA. In addition, BMDCs were capable of acquiring MHC:peptide complexes from epithelial cells. Spleen-derived CD8alpha(+) and CD8alpha(-) dendritic cells (DCs) also acquired MHC:peptide complexes from BMDCs pulsed with OVA(257-264) peptide. However, the efficiency of acquisition by these ex vivo derived DCs is much lower than acquisition by BMDC. In all cases, the acquired MHC:peptide complexes were functional in that they induced Ag-specific CD8(+) T cell proliferation. The efficiency of MHC transfer was compared with cross-presentation for splenic CD8alpha(+) and CD8alpha(-) as well as BMDCs. CD8alpha(+) DCs were more efficient at inducing T cell proliferation when they acquired Ag via cross-presentation, the opposite was observed for BMDCs and splenic CD8alpha(-) DCs. We conclude from these observations that the relative efficiency of MHC transfer vs cross-presentation differs markedly between different DC subsets.  相似文献   

2.
Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and modulates human DC function in a fashion that favors Th1 cell polarization depending on TLR4 signaling. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. Monocyte-derived DC used as adjuvant cells in cancer immunotherapy and have shown promising results. We studied the effect of interferon’s (IFN-α and IFN-γ) and TNF-α on phenotypic and functional maturation, and cytokine production of URC-primed DC in vitro. Human monocytes were exposed to either URC alone, or in combination with TNF-α, IFN-α or IFN-γ, and thereafter co-cultured with naïve T cells. We found that the expression levels of CD1a, CD83 and HLA-DR on URC-primed DC were influenced by IFN-γ and IFN-γ augmented the T cell stimulatory capacity in allo MLR to URC-primed DC. Moreover, the production of IL-12p70 by URC-primed DC was enhanced by IFN-γ. IL-12p70 production by URC-primed DC alone was influenced following treatment with anti-TLR4 mAb, but not DC differentiated with URC plus IFN-γ. URC plus IFN-γ-primed DC induced a substantial increase in the secretion of IFN-γ by T cells, which is dependent on IL-12 secretion. DC maturated with URC plus IFN-γ had an intermediate migratory capacity towards CCL19 and CCL21. In addition, the expression levels of CCR7 on URC-primed DC were enhanced by IFN-γ. In contrast, surface molecule up-regulation and function of URC-primed DC were slightly enhanced by TNF-α, and IFN-α. These results suggest that the enhancement of Th1 cells polarization to URC-primed DC induced by IFN-γ depends on the activation of IL-12p70 and independent on TLR4. DC differentiated with URC in combination with IFN-γ might be used on DC-based vaccine for cancer immunotherapy.  相似文献   

3.
4.
5.
The success of cancer immunotherapy is limited by potent endogenous immune-evasion mechanisms, which are at least in part mediated by transforming growth factor-β (TGF-β). The E3 ubiquitin ligase Cbl-b is a key regulator of T cell activation and is established to regulate TGF-β sensitivity. cblb-deficient animals reject tumors via CD8(+) T cells, which make Cbl-b an ideal target for improvement of adoptive T-cell transfer (ATC) therapy. In this study, we show that cblb-deficient CD8(+) T cells are hyper-responsive to T-cell receptor (TCR)/CD28-stimulation and are in part protected against the negative cues induced by TGF-β in vitro. Notably, adoptive transfer of polyclonal, non-TCR transgenic cblb-deficient CD8(+) T cells is not sufficient to reject B16-ova or EG7 tumors in vivo. Thus, cblb-deficient ATC requires proper in vivo re-activation by a dendritic cell (DC) vaccine. In strict contrast to ATC monotherapy, this approach delayed tumor outgrowth and significantly increased survival rates, which is paralleled by increased CD8(+) T-cells infiltration to the tumor site and enrichment of ova-specific and interferon-γ (IFN-γ)-secreting CD8(+) T cell in the draining lymph node (LN). Moreover, CD8(+) T cells from cblb-deficient mice vaccinated with the DC vaccine show increased cytolytic activity in vivo. In summary, our data using cblb-deficient polyclonal, non-TCR-transgenic adoptively transferred CD8(+) T cells into immuno-competent non-lymphodepleted recipients suggest that targeting Cbl-b might serve as a novel 'adjuvant approach', suitable to augment the effectiveness of established anti-cancer immunotherapies.  相似文献   

6.
NKp30 is a natural cytotoxicity receptor that is expressed on NK cells and recognizes B7-H6, which is expressed on several types of tumors but few normal cells. To target effector T cells against B7-H6(+) tumors, we developed several chimeric AgRs (CARs) based on NKp30, which contain the CD28- and/or CD3ζ-signaling domains with the transmembrane domains from CD3ζ, CD28, or CD8α. The data show that chimeric NKp30-expressing T cells responded to B7-H6(+) tumor cells. The NKp30 CAR-expressing T cells produced IFN-γ and killed B7-H6 ligand-expressing tumor cells; this response was dependent upon ligand expression on target cells but not on MHC expression. PBMC-derived dendritic cells also express NKp30 ligands, including immature dendritic cells, and they can stimulate NKp30 CAR-bearing T cells to produce IFN-γ, but to a lesser extent. The addition of a CD28-signaling domain significantly enhanced the activity of the NKp30 CAR in a PI3K-dependent manner. Adoptive transfer of T cells expressing a chimeric NKp30 receptor containing a CD28-signaling domain inhibited the growth of a B7-H6-expressing murine lymphoma (RMA/B7-H6) in vivo. Moreover, mice that remained tumor-free were resistant to a subsequent challenge with the wild-type RMA tumor cells, suggesting the generation of immunity against other tumor Ags. Overall, this study demonstrates the specificity and therapeutic potential of adoptive immunotherapy with NKp30 CAR-expressing T cells against B7-H6(+) tumor cells in vivo.  相似文献   

7.
Bordetella pertussis adenylate cyclase (CyaA) is an invasive bacterial toxin that delivers its N-terminal catalytic domain into the cytosol of eukaryotic cells bearing the alpha(M)beta(2) integrin (CD11b/CD18), such as myeloid dendritic cells. This allows use of engineered CyaA for targeted delivery of CD8(+) T cell epitopes into the MHC class I pathway of APC and induction of robust and protective cytotoxic responses. In this study, we demonstrate that CyaA can efficiently codeliver both a CD8(+) T cell epitope (OVA(257-264)) and a CD4(+) T cell epitope (MalE(100-114)) into, respectively, the conventional cytosolic or endocytic routes of processing of murine bone marrow-derived dendritic cells. Upon CyaA delivery, a strong potentiation of the MalE(100-114) CD4(+) T cell epitope presentation is observed as compared with the MalE protein, which depends on CyaA interaction with its CD11b receptor and its subsequent clathrin-mediated endocytosis. In vivo, CyaA induces strong and specific Th1 CD4(+) and CD8(+) T cell responses against, respectively, the MalE(100-114) and OVA(257-264) epitopes. These results underscore the potency of CyaA for design of new vaccines.  相似文献   

8.
Immunological diseases such as inflammatory bowel disease (IBD) are infrequent in less developed countries, possibly because helminths provide protection by modulating host immunity. In IBD murine models, the helminth Heligmosomoides polygyrus bakeri prevents colitis. It was determined whether H. polygyrus bakeri mediated IBD protection by altering dendritic cell (DC) function. We used a Rag IBD model where animals were reconstituted with IL10(-/-) T cells, making them susceptible to IBD and with OVA Ag-responsive OT2 T cells, allowing study of a gut antigenic response. Intestinal DC from H. polygyrus bakeri-infected Rag mice added to lamina propria mononuclear cells (LPMC) isolated from colitic animals blocked OVA IFN-γ/IL-17 responses in vitro through direct contact with the inflammatory LPMC. DC from uninfected Rag mice displayed no regulatory activity. Transfer of DC from H. polygyrus bakeri-infected mice into Rag mice reconstituted with IL10(-/-) T cells protected animals from IBD, and LPMC from these mice lost OVA responsiveness. After DC transfer, OT2 T cells populated the intestines normally. However, the OT2 T cells were rendered Ag nonresponsive through regulatory action of LPMC non-T cells. The process of regulation appeared to be regulatory T cell independent. Thus, H. polygyrus bakeri modulates intestinal DC function, rendering them tolerogenic. This appears to be an important mechanism through which H. polygyrus bakeri suppresses colitis. IFN-γ and IL-17 are colitogenic. The capacity of these DC to block a gut Ag-specific IFN-γ/IL-17 T cell response also is significant.  相似文献   

9.
The autophagy proteins (Atg) modulate not only innate but also adaptive immunity against pathogens. We examined the role of dendritic cell Atg5 and Atg7 in the production of IL-2 and IFN-γ by Toxoplasma gondii-reactive CD4+ T cells. T. gondii-reactive mouse CD4+ T cells exhibited unimpaired production of IL-2 and IFN-γ when stimulated with Atg7-deficient mouse dendritic cells that were infected with T. gondii or pulsed with T. gondii lysate antigens. In marked contrast, dendritic cells deficient in Atg5 induced diminished CD4+ T cell production of IL-2 and IFN-γ. This defect was not accompanied by changes in costimulatory ligand expression on dendritic cells or impaired production of IL-12 p70, IL-1β or TNF-α. Knockdown of Irg6a in dendritic cells did not affect CD4+ T cell cytokine production. These results indicate that Atg5 and Atg7 in dendritic cells play differential roles in the modulation of IL-2 and IFN-γ production by T. gondii-reactive CD4+ T cells.  相似文献   

10.
Although intraocular tumors reside in an immune-privileged site where immune responses are suppressed, some tumors are rejected. An example of this is the rejection of intraocular adenovirus-induced (adenovirus type 5 early region 1 [Ad5E1]) tumors in C57BL/6 mice. We previously identified an Ad5E1 tumor clone in which the rejection is IFN-γ dependent and culminates in the destruction of both the tumor and the eye. Although Ad5E1 tumors are not rejected when transplanted into the eyes of IFN-γ KO mice, they are rejected after s.c. transplantation. Thus, outside of the eye Ad5E1 tumors elicit a form of tumor immunity that is IFN-γ independent. In this article, we demonstrate that IFN-γ-independent s.c. rejection requires both CD4(+) and CD8(+) T cells. Furthermore, s.c. tumor rejection requires IL-17, which is produced by IFN-γ-deficient CD4(+) T cells in response to tumor Ags (TAs). Splenocytes from CD4-depleted IFN-γ KO mice produce significantly less IL-17 compared with splenocytes from isotype-treated IFN-γ KO animals in response to TAs. Furthermore, depletion of IL-17 decreases CTL activity against Ad5E1 tumor cells. In this model we propose that, in the absence of IFN-γ, CD4(+) T cells produce IL-17 in response to TAs, which increases CTL activity that mediates tumor rejection; however, this does not occur in the eye. IL-6 production within the eye is severely reduced, which is consistent with the failure to induce Th17 cells within the intraocular tumors. In contrast, the s.c. environment is replete with IL-6 and supports the induction of Th17 cells. Therefore, IFN-γ-independent tumor rejection is excluded from the eye and may represent a newly recognized form of ocular immune privilege.  相似文献   

11.
It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection.  相似文献   

12.
The Ag-specific CD4(+) regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4(+) Tr cells is unclear. In this study, we generated IL-10- and IFN-gamma-expressing type 1 CD4(+) Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4(+) T cells with IL-10-expressing adenovirus (AdV(IL-10))-transfected and OVA-pulsed dendritic cells (DC(OVA/IL-10)). We demonstrated that both in vitro and in vivo DC(OVA/IL-10)-stimulated CD4(+) Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4(+) Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8(+) T cells, leading to an enhanced suppression of DC(OVA)-induced CD8(+) T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by approximately 700% relative to analogous CD4(+) Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4(+)25(+) Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8(+) T cell responses and antitumor immunity after uptake of DC(OVA)-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4(+) Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4(+) Tr cell suppression.  相似文献   

13.
Mice that were intranasally vaccinated with live or dead Chlamydia muridarum with or without CpG-containing oligodeoxynucleotide 1862 elicited widely disparate levels of protective immunity to genital tract challenge. We found that the frequency of multifunctional T cells coexpressing IFN-γ and TNF-α with or without IL-2 induced by live C. muridarum most accurately correlated with the pattern of protection against C. muridarum genital tract infection, suggesting that IFN-γ(+)-producing CD4(+) T cells that highly coexpress TNF-α may be the optimal effector cells for protective immunity. We also used an immunoproteomic approach to analyze MHC class II-bound peptides eluted from dendritic cells (DCs) that were pulsed with live or dead C. muridarum elementary bodies (EBs). We found that DCs pulsed with live EBs presented 45 MHC class II C. muridarum peptides mapping to 13 proteins. In contrast, DCs pulsed with dead EBs presented only six MHC class II C. muridarum peptides mapping to three proteins. Only two epitopes were shared in common between the live and dead EB-pulsed groups. This study provides insights into the role of Ag presentation and cytokine secretion patterns of CD4(+) T effector cells that correlate with protective immunity elicited by live and dead C. muridarum. These insights should prove useful for improving vaccine design for Chlamydia trachomatis.  相似文献   

14.
Cross-presentation is a crucial mechanism for generating CD8 T cell responses against exogenous Ags, such as dead cell-derived Ag, and is mainly fulfilled by CD8α(+) dendritic cells (DC). Apoptotic cell death occurring in steady-state conditions is largely tolerogenic, thus hampering the onset of effector CD8 T cell responses. Type I IFNs (IFN-I) have been shown to promote cross-priming of CD8 T cells against soluble or viral Ags, partly through stimulation of DC. By using UV-irradiated OVA-expressing mouse EG7 thymoma cells, we show that IFN-I promote intracellular Ag persistence in CD8α(+) DC that have engulfed apoptotic EG7 cells, regulating intracellular pH, thus enhancing cross-presentation of apoptotic EG7-derived OVA Ag by CD8α(+) DC. Notably, IFN-I also sustain the survival of Ag-bearing CD8α(+) DC by selective upmodulation of antiapoptotic genes and stimulate the activation of cross-presenting DC. The ensemble of these effects results in the induction of CD8 T cell effector response in vitro and in vivo. Overall, our data indicate that IFN-I cross-prime CD8 T cells against apoptotic cell-derived Ag both by licensing DC and by enhancing cross-presentation.  相似文献   

15.
Vaccines capable of eliciting long-term T cell immunity are required for combating many diseases. Live vectors can be unsafe whereas subunit vaccines often lack potency. We previously reported induction of CD8(+) T cells to Ag entrapped in archaeal glycerolipid vesicles (archaeosomes). In this study, we evaluated the priming, phenotype, and functionality of the CD8(+) T cells induced after immunization of mice with OVA-Methanobrevibacter smithii archaeosomes (MS-OVA). A single injection of MS-OVA evoked a profound primary response but the numbers of H-2K(b)OVA(257-264)-specific CD8(+) T cells declined by 14-21 days, and <1% of primarily central phenotype (CD44(high)CD62L(high)) cells persisted. A booster injection of MS-OVA at 3-11 wk promoted massive clonal expansion and a peak effector response of approximately 20% splenic/blood OVA(257-264)-specific CD8(+) T cells. Furthermore, contraction was protracted and the memory pool (IL-7Ralpha(high)) of approximately 5% included effector (CD44(high)CD62L(low)) and central (CD44(high)CD62L(high)) phenotype cells. Recall response was observed even at >300 days. CFSE-labeled naive OT-1 (OVA(257-264) TCR transgenic) cells transferred into MS-OVA-immunized recipients cycled profoundly (>90%) within the first week of immunization indicating potent Ag presentation. Moreover, approximately 25% cycling of Ag-specific cells was seen for >50 days, suggesting an Ag depot. In vivo, CD8(+) T cells evoked by MS-OVA killed >80% of specific targets, even at day 180. MS-OVA induced responses similar in magnitude to Listeria monocytogenes-OVA, a potent live vector. Furthermore, protective CD8(+) T cells were induced in TLR2-deficient mice, suggesting nonengagement of TLR2 by archaeal lipids. Thus, an archaeosome adjuvant vaccine represents an alternative to live vectors for inducing CD8(+) T cell memory.  相似文献   

16.
Archaeal isopranoid glycerolipid vesicles (archaeosomes) serve as strong adjuvants for cell-mediated responses to entrapped Ag. We analyzed the processing pathway of OVA entrapped in archaeosomes composed of Methanobrevibacter smithii lipids, high in archaetidylserine (OVA-archaeosomes). In vitro, OVA-archaeosomes stimulated spleen cells from OVA-TCR-transgenic mice, D011.10 (CD4(+) cells expressing OVA(323-339) TCR) or OT1 (>90% CD8(+) OVA(257-264) cells), indicating both MHC class I and II presentations. In vivo, when naive (Thy1.2(+)) CFSE-labeled OT1 cells were transferred into OVA-archaeosome-immunized Thy 1.1(+) recipient mice, there was profound accumulation and cycling of donor-specific cells, and differentiation of H-2K(b)Ova(257-264) CD8(+) T cells into CD44(high)CD62L(low) effectors. Both macrophages and dendritic cells (DCs) efficiently cross-presented OVA-archaeosomes on MHC class I. Blocking phagocytosis by phosphatidylserine-specific receptor agonists strongly inhibited MHC class I presentation of OVA-archaeosomes, whereas blocking mannose receptors or FcRs lacked effect, indicating specific recognition of the archaetidylserine head group of M. smithii lipids by APCs. In addition, inhibitors of endosomal acidification blocked MHC class I processing of OVA-archaeosomes, whereas endosomal protease inhibitors lacked effect, suggesting acidification-dependent phagosome-to-cytosol diversion. Proteasomal inhibitors blocked OVA-archaeosome MHC class I presentation, confirming cytosolic processing. Both in vitro and in vivo, OVA-archaeosome MHC class I presentation required TAP. Ag-free archaeosomes also activated DC costimulation and cytokine production, without overt inflammation. Phosphatidylserine-specific receptor-mediated endocytosis is a mechanism of apoptotic cell clearance and DCs cross-present Ags sampled from apoptotic cells. Our results reveal the novel ability of archaeosomes to exploit this mechanism for cytosolic MHC class I Ag processing, and provide an effective particulate vaccination strategy.  相似文献   

17.
Toxic shock syndrome (TSS) caused by the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes is characterized by robust T cell activation, profound elevation in systemic levels of multiple cytokines, including interferon-γ (IFN-γ), followed by multiple organ dysfunction and often death. As IFN-γ possesses pro- as well as anti-inflammatory properties, we delineated its role in the pathogenesis of TSS. Antibody-mediated in vivo neutralization of IFN-γ or targeted disruption of IFN-γ gene conferred significant protection from lethal TSS in HLA-DR3 transgenic mice. Following systemic high dose SEB challenge, whereas the HLA-DR3.IFN-γ(+/+) mice became sick and succumbed to TSS, HLA-DR3.IFN-γ(-/-) mice appeared healthy and were significantly protected from SEB-induced lethality. SEB-induced systemic cytokine storm was significantly blunted in HLA-DR3.IFN-γ(-/-) transgenic mice. Serum concentrations of several cytokines (IL-4, IL-10, IL-12p40 and IL-17) and chemokines (KC, rantes, eotaxin and MCP-1) were significantly lower in HLA-DR3.IFN-γ(-/-) transgenic mice. However, SEB-induced T cell expansion in the spleens was unaffected and expansion of SEB-reactive TCR Vβ8(+) CD4(+) and CD8(+) T cells was even more pronounced in HLA-DR3.IFN-γ(-/-) transgenic mice when compared to HLA-DR3.IFN-γ(+/+) mice. A systematic histopathological examination of several vital organs revealed that both HLA-DR3.IFN-γ(+/+) and HLA-DR3.IFN-γ(-/-) transgenic mice displayed comparable severe inflammatory changes in lungs, and liver during TSS. Remarkably, whereas the small intestines from HLA-DR3.IFN-γ(+/+) transgenic mice displayed significant pathological changes during TSS, the architecture of small intestines in HLA-DR3.IFN-γ(-/-) transgenic mice was preserved. In concordance with these histopathological changes, the gut permeability to macromolecules was dramatically increased in HLA-DR3.IFN-γ(+/+) but not HLA-DR3.IFN-γ(-/-) mice during TSS. Overall, IFN-γ seemed to play a lethal role in the immunopathogenesis of TSS by inflicting fatal small bowel pathology. Our study thus identifies the important role for IFN-γ in TSS.  相似文献   

18.
IFN-γ and T cells are both required for the development of experimental cerebral malaria during Plasmodium berghei ANKA infection. Surprisingly, however, the role of IFN-γ in shaping the effector CD4(+) and CD8(+) T cell response during this infection has not been examined in detail. To address this, we have compared the effector T cell responses in wild-type and IFN-γ(-/-) mice during P. berghei ANKA infection. The expansion of splenic CD4(+) and CD8(+) T cells during P. berghei ANKA infection was unaffected by the absence of IFN-γ, but the contraction phase of the T cell response was significantly attenuated. Splenic T cell activation and effector function were essentially normal in IFN-γ(-/-) mice; however, the migration to, and accumulation of, effector CD4(+) and CD8(+) T cells in the lung, liver, and brain was altered in IFN-γ(-/-) mice. Interestingly, activation and accumulation of T cells in various nonlymphoid organs was differently affected by lack of IFN-γ, suggesting that IFN-γ influences T cell effector function to varying levels in different anatomical locations. Importantly, control of splenic T cell numbers during P. berghei ANKA infection depended on active IFN-γ-dependent environmental signals--leading to T cell apoptosis--rather than upon intrinsic alterations in T cell programming. To our knowledge, this is the first study to fully investigate the role of IFN-γ in modulating T cell function during P. berghei ANKA infection and reveals that IFN-γ is required for efficient contraction of the pool of activated T cells.  相似文献   

19.
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4(+) and CD8(+) T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1(-/-) mice or in mice depleted of CD4(+) and/or CD8(+) cells than in normal mice. The tumors in RAG1(-/-) mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.  相似文献   

20.
Sustained intratumoral delivery of IL-12 and GM-CSF can overcome tumor immune suppression and promote T cell-dependent eradication of established disease in murine tumor models. However, the antitumor effector response is transient and rapidly followed by a T suppressor cell rebound. The mechanisms that control the switch from an effector to a regulatory response in this model have not been defined. Because dendritic cells (DC) can mediate both effector and suppressor T cell priming, DC activity was monitored in the tumors and the tumor-draining lymph nodes (TDLN) of IL-12/GM-CSF-treated mice. The studies demonstrated that therapy promoted the recruitment of immunogenic DC (iDC) to tumors with subsequent migration to the TDLN within 24-48 h of treatment. Longer-term monitoring revealed that iDC converted to an IDO-positive tolerogenic phenotype in the TDLN between days 2 and 7. Specifically, day 7 DC lost the ability to prime CD8(+) T cells but preferentially induced CD4(+)Foxp3(+) T cells. The functional switch was reversible, as inhibition of IDO with 1-methyl tryptophan restored immunogenic function to tolerogenic DC. All posttherapy immunological activity was strictly associated with conventional myeloid DC, and no functional changes were observed in the plasmacytoid DC subset throughout treatment. Importantly, the initial recruitment and activation of iDC as well as the subsequent switch to tolerogenic activity were both driven by IFN-γ, revealing the dichotomous role of this cytokine in regulating IL-12-mediated antitumor T cell immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号