首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a key role in energetic metabolism regulation. Metabolic changes in immune cells, such as dendritic cell (DC), macrophages, neutrophils and lymphocytes that participate in the signal directed programs that promote or inhibit immune mediated diseases, including cancer, atherosclerosis and inflammatory diseases. Multiple pathogenic mechanisms are involved in the initiation and progression of disease, and many pathways have been uncovered. The mechanistic overlap in the metabolic changes and inflammation could indicate that some of the targets they have are in common, whereas AMPK could be useful in treatment of both disorders. The insight into identification of AMPK responsible for specific immune regulation, anti-inflammatory actions and understanding of the underlying molecular mechanism will promote the generation of novel AMPK activators, and provide novel therapy strategy.  相似文献   

2.
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.  相似文献   

3.
Neuroimaging techniques represent powerful tools to assess disease-specific cellular, biochemical and molecular processes non-invasively in vivo. Besides providing precise anatomical localisation and quantification, the most exciting advantage of non-invasive imaging techniques is the opportunity to investigate the spatial and temporal dynamics of disease-specific functional and molecular events longitudinally in intact living organisms, so called molecular imaging (MI). Combining neuroimaging technologies with in vivo models of neurological disorders provides unique opportunities to understand the aetiology and pathophysiology of human neurological disorders. In this way, neuroimaging in mouse models of neurological disorders not only can be used for phenotyping specific diseases and monitoring disease progression but also plays an essential role in the development and evaluation of disease-specific treatment approaches. In this way MI is a key technology in translational research, helping to design improved disease models as well as experimental treatment protocols that may afterwards be implemented into clinical routine. The most widely used imaging modalities in animal models to assess in vivo anatomical, functional and molecular events are positron emission tomography (PET), magnetic resonance imaging (MRI) and optical imaging (OI). Here, we review the application of neuroimaging in mouse models of neurodegeneration (Parkinson's disease, PD, and Alzheimer's disease, AD) and brain cancer (glioma).  相似文献   

4.
Cardiovascular disease is a broad term describing disease of the heart and/or blood vessels. The main blood vessel supplying the body with oxygenated blood is the aorta. The aorta may become affected in diseases such as atherosclerosis and aneurysm. Researchers investigating these diseases would benefit from direct observation of the aorta to characterize disease progression as well as to evaluate efficacy of potential therapeutics. The goal of this protocol is to describe proper isolation and excision of the aorta to aid investigators researching cardiovascular disease. Isolation and excision of the aorta allows investigators to look at gross morphometric changes as wells as allowing them to preserve and stain the tissue to look at histologic changes if desired. The aorta may be used for molecular studies to evaluate protein and gene expression to discover targets of interest and mechanisms of action. This technique is superior to imaging modalities as they have inherent limitations in technology and cost. Additionally, primary isolated cells from a freshly isolated and excised aorta can allowing researchers to perform further in situ and in vitro assays. The isolation and excision of the aorta has the limitation of having to sacrifice the animal however, in this case the benefits outweigh the harm as it is the most versatile technique in the study of aortic disease.  相似文献   

5.
The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. This article is part of a Special Issue entitled: Animal Models of Disease.  相似文献   

6.
Pancreatic cancer remains the fourth leading cause of cancer-related death in the US and is expected to be the second leading cause of cancer-related death by 2030. Therefore, it is important to better understand the molecular pathogenesis, phenotypes and features of pancreatic cancer in order to design novel molecularly targeted therapies for achieving better therapeutic outcome of patients with pancreatic cancer. Recently, the roles of microRNAs (miRNAs) in the development and progression of pancreatic cancer became a hot topic in the scientific community of pancreatic cancer research. By conducting miRNA expression profiling, the aberrant expression of miRNAs was revealed in the serum and in cancer tissues from patients with pancreatic cancer. These aberrantly expressed miRNAs are critically correlated with the disease stage, drug resistance, and survival of pancreatic cancer patients. Hence, targeting these tiny molecules, the specific miRNAs, could provide an efficient and optimal approach in the therapy of pancreatic cancer. Indeed, the pre-clinical and in vivo experiments showed that nanoparticle delivery of synthetic oligonucleotides or treatment with natural agents could be useful to modulate the expression of miRNAs and thereby inhibit pancreatic cancer growth and progression, suggesting that targeting miRNAs combined with conventional anti-cancer therapeutics could be a novel therapeutic strategy for increasing drug sensitivity and achieving better therapeutic outcome of patients diagnosed with pancreatic cancer.  相似文献   

7.
A crucial and causative role in the pathogenesis of atherosclerosis is believed to be the oxidative modification of low density lipoprotein (LDL). The oxidation of LDL involves released free radical driven lipid peroxidation. Several lines of evidence support the role of oxidized LDL in atherogenesis. Epidemiologic studies have demonstrated an association between an increased intake of dietary antioxidant vitamins, such as vitamin E and vitamin C and reduced morbidity and mortality from coronary artery diseases. It is thus hypothesized that dietary antioxidants may help prevent the development and progression of atherosclerosis. The oxidation of LDL has been shown to be reduced by antioxidants, and, in animal models, improved antioxidants may offer possibilities for the prevention of atherosclerosis. The results of several on going long randomized intervention trials will provide valuahle information on the efficacy and safety of improved antioxidants in the prevention of atherosclerosis. This review a evaluates current literature involving antioxidants and vascular disease, with a particular focus on the potential mechanisms.  相似文献   

8.
Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation.Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies, including vaccination and pharmacological intervention.  相似文献   

9.
《TARGETS》2003,2(4):154-161
Evasion of the checks and balances that govern the human cell division cycle lies at the heart of all proliferative diseases. Because of the astonishing variety of ways that cancer cells manage to achieve growth advantages over normally proliferating cells, it can be expected that pharmacological reinstatement of cell cycle progression control should also be achievable in a multitude of ways. Very few cell cycle targets have so far been exploited for the discovery of mechanism-based anticancer drugs; even fewer targets have yielded actual or experimental clinical drugs. Here, we discuss the approaches that have been and are beginning to be used to identify and validate molecular targets whose pharmacological modulation holds the promise of nongenotoxic and inherently selective cancer therapy. We discuss an approach based on using the genetically amenable organism Drosophila melanogaster as a model for the identification of cell cycle targets, particularly those involved in the processes of mitosis.  相似文献   

10.
Gastric cancer is one of the most common and lethal cancers worldwide. However, despite its clinical importance, the regulatory mechanisms involved in the aggressiveness of this cancer are still poorly understood. A better understanding of the biology, genetics and molecular mechanisms of gastric cancer would be useful in developing novel targeted approaches for treating this disease. In this study we used protein-protein interaction networks and cluster analysis to comprehensively investigate the cellular pathways involved in gastric cancer. A primary immunodeficiency pathway, focal adhesion, ECM-receptor interactions and the metabolism of xenobiotics by cytochrome P450 were identified as four important pathways associated with the progression of gastric cancer. The genes in these pathways, e.g., ZAP70, IGLL1, CD79A, COL6A3, COL3A1, COL1A1, CYP2C18 and CYP2C9, may be considered as potential therapeutic targets for gastric cancer.  相似文献   

11.
The enormous advances in our understanding of the progression of diseases at the molecular level have been supplemented by the new field of ‘molecular imaging’, which provides for in vivo visualization of molecular events at the cellular level in living organisms. Molecular imaging is a noninvasive assessment of gene and protein function, protein–protein interaction and/or signal transduction pathways in animal models of human disease and in patients to provide insights into molecular pathogenesis. Five major imaging techniques are currently available to assess the structural and functional alterations in vivo in small animals. These are (i) optical bioluminescence and fluorescence imaging techniques, (ii) radionuclide-based positron emission tomography (PET) and single photon emitted computed tomography (SPECT), (iii) X-ray-based computed tomography (CT), (iv) magnetic resonance imaging (MRI) and (v) ultrasound imaging (US). Functional molecular imaging requires an imaging probe that is specific for a given molecular event. In preclinical imaging, involving small animal models, the imaging probe could be an element of a direct (‘direct imaging’) or an indirect (‘indirect imaging’) event. Reporter genes are essential for indirect imaging and provide a general integrated platform for many different applications. Applications of multimodality imaging using combinations of bioluminescent, fluorescent and PET reporter genes in unified fusion vectors developed by us for recording events from single live cells to whole animals with high sensitivity and accurate quantification are discussed. Such approaches have immense potential to track progression of metastasis, immune cell trafficking, stem cell therapy, transgenic animals and even molecular interactions in living subjects.  相似文献   

12.
Classical risk factors for cardiovascular and cerebrovascular diseases do not fully coincide with the prevalence of these conditions. Emerging evidences show that new factors may be predisposing for the development of ischemic events. It has been demonstrated that atherosclerosis has a strong inflammatory background; such state of chronic inflammation may be related to the presence of persistent infectious agent. Helicobacter pylori (H. pylori), among other microorganisms, has been extensively investigated for its possible role. Many molecular mechanisms have been hypothesized to explain its eventual action. Epidemiological studies do not exclude a correlation between the infection and cardiovascular and cerebrovascular diseases. Many confounding factors, however, make difficult a definitive evaluation of the huge number of data present in the literature. Moreover, various therapeutic studies have been attempted to show if antibiotic treatment improves prognosis in patients affected by ischemic heart disease. Still, none of these trials focused specifically on the effects of H. pylori eradication on the clinical progression of vascular lesions.  相似文献   

13.
Fast and precise diagnosis of infectious and non-infectious animal diseases and their targeted treatments are of utmost importance for their clinical management. The existing biochemical, serological and molecular methods of disease diagnosis need improvement in their specificity, sensitivity and cost and, are generally not amenable for being used as points-of-care (POC) device. Further, with dramatic changes in environment and farm management practices, one should also arm ourselves and prepare for emerging and re-emerging animal diseases such as cancer, prion diseases, COVID-19, influenza etc. Aptamer – oligonucleotide or short peptides that can specifically bind to target molecules – have increasingly become popular in developing biosensors for sensitive detection of analytes, pathogens (bacteria, virus, fungus, prions), drug residues, toxins and, cancerous cells. They have also been proven successful in the cellular delivery of drugs and targeted therapy of infectious diseases and physiological disorders. However, the in vivo application of aptamer-mediated biosensing and therapy in animals has been limited. This paper reviews the existing reports on the application of aptamer-based biosensors and targeted therapy in animals. It also dissects the various modifications to aptamers that were found to be successful in in vivo application of the aptamers in diagnostics and therapeutics. Finally, it also highlights major challenges and future directions in the application of aptamers in the field of veterinary medicine.  相似文献   

14.
One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.  相似文献   

15.
Uncontrolled or sustained inflammation is the underlying cause of or actively contributes to the progression of many chronic pathologies such as atherosclerosis, arthritis, or neuroinflammatory diseases. Matricellular proteins of the CCN family (CYR61/CTGF/NOV) have emerged as localized multitasking signal integrators. These structurally conserved secreted proteins specifically interact with and signal through various extracellular partners, in particular integrins, which enable them to play crucial roles in various processes including development, angiogenesis, wound healing and diseases such as fibrosis, vascular disease and cancer. In this review, we discuss the possibility that the CCN family members could represent a putative new class of modulators of inflammation. In this context, we focused on their relationship with cytokines and chemokines. In vitro, CCN expression is finely regulated by diverse inflammatory mediators including cytokines (TNFα, IL1β, TGF-β), small factors such as prostaglandins, nitric oxide, histamine and serotonin, and extracellular matrix enzymes. In addition, CCN proteins acting alone or in concert with their specific partners appear to be potent regulators of the production of cytokines and chemokines in a context-dependent manner. Finally, emerging studies suggest a potential role for CCN proteins in chronic inflammatory diseases such as atherosclerosis, rheumatoid arthritis, inflammatory kidney diseases and neuroinflammatory pathologies such as Alzheimer’s disease. CCN members could therefore represent new potential therapeutic targets for drug development against such diseases.  相似文献   

16.
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, have been used successfully in the treatment of hypercholesterolemia for more than a decade. Statins also exhibit overall clinical benefits on cardiovascular diseases independent of their effects on lowering serum cholesterol levels. These beneficial effects of statin therapy are believed to be due, at least in part, to the anti-inflammatory and immunomodulatory roles of statins. Statin treatment reduces the levels of inflammatory markers, decreases the activation and recruitment of immune cells, and delays the progression of atherosclerosis, a chronic inflammatory disease. However, little is known about the direct impact of statins on immune cells, particularly on macrophages. We report that lovastatin, a member of the statin family, effectively induces apoptosis in macrophages. Further investigation of the molecular mechanism has revealed that Rac1 and Cdc42, the small GTPase family members, may play an important role in lovastatin-induced macrophage apoptosis. Moreover, the activation of the JNK pathway may contribute to this event. Our findings provide a better understanding of the molecular basis underlying the anti-inflammatory clinical benefits of statin therapy in cardiovascular diseases.  相似文献   

17.
Spontaneous atherosclerosis is largely an occlusive disease of medium-size arteries whose progression in a hyperlipidemic environment reflects chronic interactions among injury stimuli to the vessel wall and "responses to injury" by vascular tissue and certain blood components. Development of vessel lesions in animal models of spontaneous atherosclerosis and (at least in principle) in man largely reflects responses of three major cell types (vascular endothelial cells, vascular smooth muscle cells, monocytes-macrophages) as well as the content and distribution of lipids among various lipoprotein subclasses and the increased atherogenicity of modified (e.g., oxidized) lipoproteins. The severe clinical complications associated with spontaneous atherosclerosis, along with its rather common incidence in man, have focused attention on the prevention and therapy of this vascular disease state. Some pharmacological studies in animal models of spontaneous atherosclerosis and some retrospective epidemiological studies in man suggest that vitamin E, the principal (if not sole) lipid-soluble chain-breaking tissue antioxidant, might have therapeutic benefit as an antiatherosclerotic agent. This suggestion gains support from a variety of compelling in vitro evidence demonstrating direct influences of vitamin E on cells and lipoproteins likely involved in the pathogenesis of spontaneous atherosclerosis. Biochemical and cellular data indicate that the potential antiatherogenic activity of vitamin E could reflect its activities as a regulator of endothelial, smooth muscle, or monocyte-macrophage function, an inhibitor of endothelial membrane lipid peroxidation, a modulator of plasma lipid levels and lipid distribution among circulating lipoproteins, and a preventor of lipoprotein oxidative modification. On the other hand, there is a comparative lack of conclusive evidence from animal models regarding: (a) the importance to atherogenesis of vascular and cellular processes modulated by vitamin E; (b) the influence of vitamin E on these processes in vivo and, consequently, on the initiation/progression of spontaneous atherosclerosis. Therefore, pharmacologic investigation of vitamin E (and synthetic, vitamin E-like antioxidants) in nutritional and hyperlipidemic animal models of spontaneous atherosclerosis is required to establish whether any atherosclerotic impact is associated with vitamin E and, if so, what the mechanistic basis of the therapeutic benefit is. Such a line of experimental inquiry should also increase our understanding of the pathogenesis of atherosclerotic vessel disease per se.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are debilitating neurodegenerative conditions for which there is no effective cure. Genetic determinants of both diseases have been identified, providing insight into neuropathological mechanisms and opportunities for therapeutic intervention. Aggregation of mutant proteins is the most prominent phenotype of these neurodegenerative diseases as is the case in Alzheimer’s disease and Parkinson’s disease. Here we review transgenic animal models of ALS and HD in mouse, zebrafish, C. elegans, and Drosophila that have been developed to study different aspects of disease progression. We also cover some large mammal transgenic models that have been recently developed. To effectively tackle these conditions will likely require effective use of several of these animal models, as each offers distinct advantages and insights into disease pathology.  相似文献   

19.
20.
Aminopeptidase N (APN) belongs to the aminopeptidase family, which is widely distributed throughout the animal and plant kingdoms. APN is thought to be a very important target for cancer therapy as it is linked to cancer progression and metastasis. However, bestatin (Ubenimex) is the only approved drug that targets various aminopeptidases for the treatment of acute myelocytic leukemia and lymphedema. A compound 3-amino-2-hydroxy-4-phenylbutanoylvalylisoleucine (also known as LYRM03), isolated from a Streptomyces strain HCCB10043, exhibited more potent inhibitory activity than bestatin. In this work, we applied a chemical synthesis strategy to generate LYRM03 to overcome the low yields typically achieved from fermentation. Finally, we explored a suite of experiments to determine the bioactivity of LYRM03 and revealed that the metastasis of MDA-MB-231 cells was significantly restrained with LYRM03 treatment or injection both in vitro and in vivo. Because of its anti-metastasis capacity, further structure modifications of LYRM03 will be of interest for its use alone or in combination as a therapy in cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号