首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paraquat is most extensively used methyl viologen herbicide to control weeds in the rice-Azolla ecosystem. The effects of different paraquat (PQ) dosages on growth, lipid peroxidation, and activity of antioxidant enzymes of Azolla microphylla Kaul. were investigated. The results indicated that Azolla fronds survived only at the concentrations of 2–6 μM PQ. Frond fragmentation and browning occurred after 24 h at 8 μM PQ. At 24 h, the amount of proteins decreased by 48.7 % in Azolla fronds exposed to 10 μM PQ than that in control fronds. The supplementation of 10 μM PQ increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) by 2,4-, 1,8-, 3,0-, and 2,2-fold, respectively, as compared with control. The content of PQ and activities of SOD, CAT, GPX, and APX were found to be positively correlated. Our study showed that PQ (2–6 μM) caused ROS overproduction in Azolla fronds, which were scavenged by induced activities of antioxidant enzymes.  相似文献   

2.
The present study was designed to examine whether exogenous sodium nitroprusside (SNP) supplementation has any ameliorating action against PEG-induced osmotic stress in Zea mays cv. FRB-73 roots. Twenty percent or 40 % polyethylene glycol (PEG6000; ?0.5 MPa and ?1.76 MPa, respectively) treatment alone or in combination with 150 and 300 μM SNP was applied to hydroponically grown maize roots for 72 h. Although only catalase (CAT) activity increased when maize roots were exposed to PEG-induced osmotic stress, induction of this antioxidant enzyme was inadequate to detoxify the extreme levels of reactive oxygen species, as evidenced by growth, water content, superoxide anion radical (O 2 ?? ), hydroxyl radical (OH?) scavenging activity, and TBARS content. However, supplementation of PEG-exposed specimens with SNP significantly alleviated stress-induced damage through effective water management and enhancement of antioxidant defense markers including the enzymatic/non-enzymatic systems. Exogenously applied SNP under stress resulted in the up-regulation of glutathione peroxidase (GPX), glutathione S-transferase (GST), ascorbate peroxidase (APX), glutathione reductase (GR), total ascorbate, and glutathione contents involved in ascorbate–glutathione cycle. On the other hand, growth rate, osmotic potential, CAT, APX, GR, and GPX increased in maize roots exposed to both concentrations of SNP alone, but activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase decreased. Based on the above results, an exogenous supply of both 150 and 300 μM SNP to maize roots was protective for PEG-induced toxicity. The present study provides new insights into the mechanisms of SNP (NO donor) amelioration of PEG-induced osmotic stress damages in hydroponically grown maize roots.  相似文献   

3.
Nitric oxide (NO) is a bioactive gaseous, multifunctional molecule playing a central role and mediating a variety of physiological processes and responses to biotic and abiotic stresses including heavy metals. The present study investigated whether NO applied exogenously as sodium nitroprusside (SNP) has a protective role against arsenic (As) toxicity (applied as sodium arsenate) in Vigna radiata (mung bean) germinating seeds. Treatment with 75???M SNP significantly improved mung bean seed germination, growth, and decreased the As-accumulation. Furthermore, As-induced oxidative stress measured in terms of malondialdehyde and H2O2 contents was lesser upon supplementation of SNP indicating a reactive oxygen species scavenging activity of NO. In addition, supplementation of SNP markedly decreased the activity of superoxide dismutase and stimulated catalase, ??-amylase, protease and slightly changed the H+-ATPase activity.  相似文献   

4.
The effects of salicylic acid (SA), sodium nitroprusside (SNP), a nitric oxide donor, and their combination (SA+SNP) on some physiological parameters of 23-day-old soybean seedlings grown under saline and nonsaline conditions were studied. The changes in the leaf area, shoot fresh and dry weights, contents of chlorophylls and carotenoids, amounts of MDA and hydrogen peroxide showed that the addition of 100 μM SA and/or 100 μM SNP markedly declined the oxidative damage to soybean plants induced by 50 and 100 μM NaCl. Our results proved that combined action of SA and nitric oxide donor significantly activated catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX), which contributed to the decay of H2O2 in soybean leaves under NaCl toxicity. The protective action of (SA+SNP) against saltinduced oxidative damage was often more efficient than effects of SA and SNP alone. We also observed that the accumulation of proline was apparently accelerated by these substances under salt stress. As well, it was observed that the interaction between SA and nitric oxide had synergistic effects in decreasing of the damages induced by NaCl salinity.  相似文献   

5.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

6.
We present here a comprehensive study depicting the differences in biochemical responses to increasing CdCl2 concentrations (0.1, 0.25, 0.5 and 1.5 mM) in the two indica rice varieties, IR-29 (salt-sensitive) and Nonabokra (salt-tolerant), in order to contribute to our understanding of genotypic variation of cadmium tolerance. The oxidative damages in both the varieties enhanced with the increase in CdCl2 concentrations, the susceptibility of IR-29 being more pronounced than Nonabokra. The detrimental effects in IR-29 were reflected in greater chlorophyll loss, higher H2O2 and malondialdehyde content even at lower concentrations and drastically higher lipoxygenase activity, protein oxidation and putrescine accumulation, especially at higher CdCl2 levels. The antioxidants like anthocyanin and carotenoids, antioxidative enzymes like guaiacol peroxidase (GPX) and ascorbate peroxidase (APX), osmolytes like proline, reducing sugars, spermidine and spermine, increased in both the varieties with CdCl2 levels. While anthocyanin, reducing sugars and spermine showed greater increment in IR-29, the GPX/APX activity was more enhanced in Nonabokra; the increase in carotenoids, proline and spermidine being similar in both the varieties. However, reverse trends were noted for cysteine level and CAT activity; IR-29 showed marked decrease in cysteine content and CAT activity with increased cadmium exposure, whereas in Nonabokra, both the parameters increased, particularly at higher cadmium levels. Thus, the detoxification mechanism in the more-susceptible IR-29 was probably rendered by anthocyanin, reducing sugars and spermine in particular, as well as by GPX/APX, rather than cysteine and CAT, which showed cadmium sensitivity. Thus, the CdCl2 stress-dependent comparative biochemical analyses displayed major differences in the two rice varieties in terms of tolerance to Cd toxicity. Our data provides evidence that Nonabokra, which is a well-known variety tolerant to sodium chloride toxicity, also shows promising tolerance to cadmium toxicity, and hints at their possible utilization in Cd remediation.  相似文献   

7.
The inhibitory effect of nickel on the growth of wheat (Triticum aestivum L.) seedlings and the alleviation of nickel toxicity by nitric oxide (NO) were investigated. Nickel (Ni) at 100 μM caused striking reduction in seedling growth and significant overproduction of MDA and H2O2 in the roots. Supplementation with NO donor sodium nitroprusside (SNP) could significantly reverse the inhibitory effect of nickel in a dose-dependent manner. K3Fe(CN)6, a SNP analogue, which does not release NO, had no ameliorative effect on Ni toxicity in wheat.. In addition, application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, could dramatically counteract the stimulatory effects of SNP on the growth of wheat seedling roots under Ni stress, confirming that NO rather than other compounds derived from SNP was responsible for the alleviating effect of Ni toxicity. Further results showed that SNP enhanced the activities of guaiacol peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1..1..5.1..1), glutathione reductase (GR, EC 1.6.4.2), and glutathione S-transferase (GST, EC 2.5.1.18) in wheat seedling roots under nickel stress, while no significant difference in the activity of catalase (CAT, EC 1.11.1.6) in wheat roots supplemented with SNP or without it was observed. These results clearly indicate that NO has a protective role in Ni-induced oxidative damage through modulation of antioxidant enzymes.  相似文献   

8.
Effect of high temperature stress on polyamine catabolism and antioxidant enzyme activity in relation to glutathione, ascorbate and proline accumulation was studied in five wheat (Triticum aestivum L.) genotypes (differently susceptible to temperature stress). High temperature significantly increased the activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and glutathione S-transferase (GST) in shoots of all genotypes. Higher activities of GPX in C 306, C 273 and APX in PBW 550, PBW 343 and PBW 534 demonstrate their important role in scavenging H2O2. Conversely, high temperature stress led to a significant decline in SOD, CAT, APX and GPX activities of roots with a subsequent increase in diamine oxidase (DAO) and polyamine oxidase (PAO) activities especially in PBW 550 and PBW 343. The concentration of ascorbic acid declined with the imposition of heat stress, however, polyamines responded to high temperature stress by increasing spermidine and spermine levels and decreasing putrescine levels. After exposure to high temperature, proline accumulation was significantly decreased in roots and increased in shoots though maximum concentration was achieved in C 306 genotype. Apparently, the wheat seedlings respond to high temperature mediated increase in reactive oxygen species (ROS) production by altering antioxidative defense mechanism and polyamine catabolism though differentially in five wheat genotypes. Among five genotypes studied, C 306 and C 273 seem to be better protected against temperature stress. The results suggested that shoots were more resistant against the destructive effects of ROS as is indicated by low levels of thiobarbituric acid reactive substances under high temperature stress.  相似文献   

9.
The present study investigated the effects of aluminum on lipid peroxidation, accumulation of reactive oxygen species and antioxidative defense systems in root tips of wheat (Triticum aestivum L.) seedlings. Exposure to 30 μM Al increased contents of malondialdehyde, H2O2, suproxide radical and Evans blue uptake in both genotypes, with increases being greater in Al-sensitive genotype Yangmai-5 than in Al-tolerant genotype Jian-864. In addition, Al treatment increased the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and glutathione peroxidase (GPX), as well as the contents of ascorbate (AsA) and glutathione (GSH) in both genotypes. The increased activities SOD and POD were greater in Yangmai-5 than in Jian-864, whereas the opposite was true for the activities of CAT, APX, MDHAR, GR and GPX and the contents of AsA and GSH. Consequently, the antioxidant capacity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging activity and ferric reducing/antioxidant power (FRAP) was greater in Jian-864 than in Yangmai-5.  相似文献   

10.
A greenhouse hydroponic experiment was performed using Cd-sensitive (cv. Dong 17) and Cd-tolerant (Weisuobuzhi) barley seedlings to evaluate how different genotypes responded to cadmium (Cd) toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that 5 μM Cd increased the accumulation of O2•−, H2O2, and malondialdehyde (MDA) but reduced plant height, chlorophyll content, net photosynthetic rate (P n), and biomass, with a much more severe response in the Cd-sensitive genotype. Antioxidant enzyme activities increased significantly under Cd stress in the roots of the tolerant genotype, whereas in leaves of the sensitive genotype, superoxide dismutase (SOD) and ascorbate peroxide (APX), especially cytosol ascorbate peroxidase (cAPX), decreased after 5–15 days Cd exposure. Moreover, Cd induces NO synthesis by stimulating nitrate reductase and nitric oxide synthetase-like enzymes in roots/leaves. A Cd-induced NO transient increase in roots of the Cd-tolerant genotype might partly contribute to its Cd tolerance. Exogenous NO dramatically alleviated Cd toxicity, markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation, ameliorated Cd-induced damage to leaf/root ultrastructure, and increased chlorophyll content and P n. External NO counteracted the pattern of alterations in certain antioxidant enzymes induced by Cd; for example, it significantly elevated the depressed SOD, APX, and catalase (CAT) activities in the Cd-sensitive genotype after 10- and 15-day treatments. Furthermore, NO significantly increased stromal APX and Mn-SOD activities in both genotypes and upregulated Cd-induced decrease in cAPX activity and gene expression of root/leaf cAPX and leaf CAT1 in the Cd-sensitive genotype. These data suggest that under Cd stress, NO, as a potent antioxidant, protects barley seedlings against oxidative damage by directly and indirectly scavenging ROS and helps to maintain stability and integrity of the subcellular structure.  相似文献   

11.
Cadmium (Cd) is a non-redox toxic heavy metal present in the environment and induces oxidative stress in plants. We investigated whether exogenous nitric oxide (NO) supplementation as sodium nitroprusside (SNP) has any ameliorating action against Cd-induced oxidative damage in plant roots and thus protective role against Cd toxicity. Cd treatment (50 or 250 μM) alone or in combination with 200 μM SNP was given to hydroponically grown wheat roots for a short time period of 24 h and then these were shifted to distilled water to observe changes in levels of oxidative markers (lipid peroxidation, H2O2 content and electrolyte leakage). Supplementation of Cd with SNP significantly reduced the Cd-induced lipid peroxidation, H2O2 content and electrolyte leakage in wheat roots. It indicated a reactive oxygen species (ROS) scavenging activity of NO. However, even upon removal of Cd-treatment solution, the levels of oxidative markers increased during 24 h recovery stage and later at 48 h these decreased. Cd treatment resulted in an upregulation of activities of antioxidant enzymes—superoxide dismutase (SOD, 1.15.1.1), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6), and glutathione reductase (GR, 1.6.4.2). SNP supply resulted in a reduction in Cd-induced increased activities of scavenging enzymes. The protective role of exogenous NO in decreasing Cd-induced oxidative damage was also evident from the histochemical localization of lipid peroxidation, plasma membrane integrity and superoxides. The study concludes that an exogenous supply of NO protects wheat roots from Cd-induced toxicity.  相似文献   

12.
Heavy metal-contaminated sites are excellent areas to examine the antioxidative machinery responsible for physiological adaptations of many plant species.Superoxide dismutase (SOD), guaiacol peroxide (GPX), ascorbate peroxide (APX), catalase (CAT) activity and hydrogen peroxide (H2O2) content were analyzed in leaves and roots of Viola tricolor (Viola) from contaminated soils (‘Bukowno’, ‘Saturn’, ‘Warpie’ heaps), and non-contaminated soil (‘Zakopane meadow’) to examine the level of oxidative stress and antioxidative response.In leaves, six isoforms of SOD were recognized. Roots possessed two additional bands, named manganese superoxide dismutase (MnSOD)-like form (MnSODI) and Cu/ZnSOD-like form (Cu/ZnSODIV). The H2O2 content in leaves ranged from 554 to 5 098 μmol H2O2/g f.w. and was negatively correlated with CAT activity. The non-contaminated population was characterized by the lowest CAT activity combined with the highest H2O2 concentration. Two isoforms of CAT, CAT-1 and CAT-2, were recognized in leaves of plants from non-contaminated and contaminated sites, respectively. In roots of individuals from two heaps (‘Warpie’ and ‘Saturn’), two distinct bands for each CAT isoform were observed. A slower migrating band may be an aggregate, exhibiting CAT and MnSODs activities. Both peroxidases (APX and GPX) presented the same pattern of activity, depending on the organ, indicating that in leaves and roots APX and GPX were regulated in parallel.Differences in enzyme activities and H2O2 content between plants from different contaminated sites were statistically significant, but were tightly maintained at a very similar level. Prolonged and permanent heavy metal stress evoked a very similar mode of antioxidative response in specimens of analyzed metalliferous populations not causing measurable oxidative stress. Thus, our results clearly indicate that V. tricolor is a taxon well adapted to heavy metal-contaminated soils, and that differences in enzyme activities and H2O2 content result from adjustment of plants to a variety of conditions.  相似文献   

13.
The phytotoxin coronatine (COR) is a jasmonic acid mimic produced by several pathovars of plant pathogen. In this study, we evaluated the protective effect of COR and nitric oxide (NO) against the toxicity of sodium arsenate in sweet basil (Ocimum basilicum L.). According to the statistical analysis, arsenic had a significant adverse effect on length and biomass of plants. Seedlings that pretreated with COR and sodium nitroprusside (SNP), significantly reversed fresh and dry lose and relative water content decay induced by the metalloid. The protective effects of COR and SNP were indicated by extent of lipid peroxidation, increase glutathione (GSH), ascorbate and thiol (–SH) content, promote antioxidant enzymes and reduce H2O2 content in basil seedlings. The present observation suggested that reduction of excess arsenic As-induced toxicity in O. basilicum by COR and NO is through the activation of enzymes involved in ROS detoxification (CAT, SOD, POD, APX, GR) and maintenance contents of molecular antioxidant (GSH, ascorbate, non-protein thiol and protein-thiol). Moreover, the results revealed a mutually amplifying reaction between COR and NO in reducing As-induced damages.  相似文献   

14.
Nitric oxide (NO) is a bioactive gaseous, multifunctional molecule playing a central role and mediating a variety of physiological processes and responses to biotic and abiotic stresses including heavy metals. The present study investigated whether NO applied exogenously as sodium nitroprusside (SNP) has any protective role against arsenic (As) toxicity in Oryza sativa (rice). Treatment with 50 μM SNP (a NO donor) significantly ameliorated the As-induced (25 or 50 μM) decrease in root and coleoptile length of rice. Further, As-induced oxidative stress measured in terms of malondialdehyde (MDA), superoxide ion (), root oxidizability and H2O2 content was lesser upon supplementation of NO. It indicated a reactive oxygen species (ROS) scavenging activity of NO. NO addition reversed (only partially) the As-induced increase in activities of antioxidant enzymes – superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, and catalase. The study concludes that exogenous NO provides resistance to rice against As-toxicity and has an ameliorating effect against As-induced stress.  相似文献   

15.
The effect of foliar pretreatment by hydrogen peroxide (H2O2) at low concentrations of 0, 5, 10, and 15 mM on the chilling tolerance of two Zoysia cultivars, manilagrass (Zoysia matrella) and mascarenegrass (Zoysia tenuifolia), was studied. The optimal concentration for H2O2 pretreatment was 10 mM, as demonstrated by the lowest malondialdehyde (MDA) content and electrolyte leakage (EL) levels and higher protein content under chilling stress (7°C/2°C, day/night). Prior to initiation of chilling, exogenous 10 mM H2O2 significantly increased catalase (CAT), ascorbate peroxidase (APX), glutathione-dependent peroxidases (GPX), and glutathione-S-transferase (GST) activities in manilagrass, and guaiacol peroxidase (POD), APX, and glutathione reductase (GR) activities in mascarenegrass, suggesting that H2O2 may act as a signaling molecule, inducing protective metabolic responses against further oxidative damage due to chilling. Under further stress, optimal pretreatments alleviated the increase of H2O2 level and the decrease of turfgrass quality, and improved CAT, POD, APX, GR, and GPX activities, with especially significant enhancement of APX and GPX activities from the initiation to end of chilling. These antioxidative enzymes were likely the important factors for acquisition of tolerance to chilling stress in the two Zoysia cultivars. Our results showed that pretreatment with H2O2 at appropriate concentration may improve the tolerance of warm-season Zoysia grasses to chilling stress, and that manilagrass had better tolerance to chilling, as evaluated by lower MDA and EL, and better turfgrass quality, regardless of the pretreatment applied.  相似文献   

16.
Nitric oxide (NO) is a multifunctional gaseous signal in plant. In the present study, we found that pretreatment with NO could significantly improve wheat seeds germination and alleviate oxidative stress against copper toxicity. With the enhancement of copper stress, the germination percentage of wheat seeds decreased gradually. Pretreatment during wheat seed imbibition with sodium nitroprusside (SNP), an NO donor, could greatly reverse the inhibitory effect of the following copper stress to wheat seeds germination. SNP-pretreated seeds also tended to retain higher amylase activities than that of the control without SNP pretreatment. On the other hand, there was no apparent difference in the activities of esterase in wheat seeds pretreated with or without SNP. Further investigations showed that pretreatment with NO donor dramatically stimulated the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6), decreased the activities of lipoxygenases, sustained a lower level of malondialdehyde, and interfered with hydrogen peroxide (H2O2) excessive accumulation compared with the control, thereby enhancing the antioxidative capacity in wheat seeds under copper stress. In addition, the seed copper contents were not significant different between those pretreated with SNP and the controls, inferring that protective roles of NO was not responsible for preventing Cu uptake. Kang-Di Hu and Lan-Ying Hu contributed equally to this paper.  相似文献   

17.
The present investigation evaluated the ability of an antioxidative defense system in terms of the tolerance against salinity-induced oxidative stress and also explored a possible relationship between the status of the components of an antioxidative defense system and the salt tolerance in Indica rice (Oryza sativa L.) genotypes. When the seedlings of a salt-sensitive cultivar was grown in sand cultures containing different NaCl concentrations (7 and 14 dS m?1) for 5–20 days, a substantial increase was observed in the rate of superoxide anion (O 2 ·? ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) which indicated an enhancement in lipid peroxidation. A declination in the level of thiol clearly indicated an increase in the protein oxidation as well as a decline in the reduced forms of ascorbate (AsA) and glutathione (GSH) and the ratios of their reduced to oxidized forms occurred in the salt-sensitive seedlings. Similar treatment caused a very little alteration or no change in the levels of these components in the seedlings of salt-tolerant cultivar. The activity of antioxidative enzymes superoxide dismutase (SOD), its isoform Cu/Zn-SOD and ascorbate peroxidase (APX) increased in both the cultivars against salinity. In salt-sensitive seedlings, the activity of the various enzymes, guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) increased at moderate salinity treatment of 7 dS m?1 NaCl while the activities of these enzymes declined with higher salinity level of 14 dS m?1 NaCl. However, a consistent increase was observed in the activities of these enzymes of salt-tolerant seedlings with an increase in the duration and the level of the salinity treatment. The results suggest that a higher status of antioxidants (AsA and GSH) and a coordinated higher activity of the enzymes (SOD, CAT, GPX, APX, and GR) can serve as the major determinants in the model for depicting salt tolerance in Indica rice seedlings.  相似文献   

18.
Manganese (Mn) is an essential element for plant growth but in excess, specially in acidic soils, it can become phytotoxic. In order to investigate whether oxidative stress is associated with the expression of Mn toxicity during early seedling establishment of rice plants, we examined the changes in the level of reactive oxygen species (ROS), oxidative stress induced an alteration in the level of non-enzymic antioxidants and activities of antioxidative enzymes in rice seedlings grown in sand cultures containing 3 and 6 mM MnCl2. Mn treatment inhibited growth of rice seedlings, the metal increasingly accumulated in roots and shoots and caused damage to membranes. Mn treated plants showed increased generation of superoxide anion (O2 .−), elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) and decline in protein thiol. The level of nonprotein thiol, however, increased due to Mn treatment. A decline in contents of reduced ascorbate (AsA) and glutathione (GSH) as well as decline in ratios of their reduced to oxidize forms was observed in Mn-treated seedlings. The activities of antioxidative enzymes superoxide dismutase (SOD) and its isoforms Mn SOD, Cu/Zn SOD, Fe SOD as well as guaiacol peroxidase (GPX) increased in the seedlings due to Mn treatment however, catalase (CAT) activity increased in 10 days old seedlings but it declined by 20 days under Mn treatment. The enzymes of Halliwell-Asada cycle, ascorbate peroxidase (APX) monodehydoascorbate reductase (MDHAR), dehyroascorbate reductase (DHAR) and glutathione reductase (GR) increased significantly in Mn treated seedlings over controls. Results suggest that in rice seedlings excess Mn induces oxidative stress, imbalances the levels of antioxidants and the antioxidative enzymes SOD, GPX, APX and GR appear to play an important role in scavenging ROS and withstanding oxidative stress induced by Mn.  相似文献   

19.
Callus cultures of two parental clones of Populus nigra L., Poli and 58-861, originating from contrasting environments, were exposed to different cadmium concentrations (0, 150 and 250 μM CdSO4). Clones showed different growth responses to cadmium, evaluated by the tolerance index (Ti), with Poli being more tolerant to the metal at both concentrations. The cadmium concentration at the end of the treatment was very similar between clones at 150 μM CdSO4, while a higher value in 58-861 compared to Poli was detected at 250 μM CdSO4. The bioconcentration factor evidenced the lowest value in Poli at 250 μM CdSO4. Unlike 58-861, cadmium provoked a strong induction of thiols and phytochelatins in clone Poli. In both clones, organic acid concentration differed notably in untreated calli and cadmium treatment induced a general lowering of these compounds. A notably higher antioxidant enzyme activity (ascorbate peroxidase, APX; catalase, CAT; guaiacol peroxidase, GPX) was measured in control calli of clone Poli compared to 58-861. Cadmium induced a remarkable enhancement of APX and CAT, but not GPX, activity at 150 μM CdSO4 in Poli. Conversely, in 58-861 at 150 μM CdSO4, and in both clones at 250 μM CdSO4, a decrease in the antioxidant activity occurred. This investigation provided evidence that these two contrasting genotypes of P. nigra are characterised by a different response to cadmium in callus cultures. In particular, in Poli, the higher tolerance to cadmium is associated with a higher activity of antioxidative enzymes and the ability to strongly increase thiol and PC concentration in response to metal exposure.  相似文献   

20.
Plant growth and productivity are greatly affected due to changes in the environmental conditions. In the present investigation, the interactive effects of two important abiotic stresses, i.e., water deficit and Al toxicity, were examined in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (water deficit/Al sensitive) and Vandana (water deficit/Al tolerant). When 15 days grown seedlings were exposed to water deficit (created with 15 % polyethylene glycol 6000) or Al (1 mM AlCl3) treatment or both the treatments together for 48 h, the lengths of root/shoot, relative water content, and chlorophyll greatly declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Seedlings subjected to water deficit or Al treatment alone or in combination showed increased intensity of the isoenzyme activity bands of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) in in-gel activity staining studies. Water deficit caused decrease in intensity of catalase (CAT) activity bands; however, when seedlings were exposed to AlCl3 alone or in combination with water deficit, the intensity of the CAT isoforms increased in both the rice cultivars. The level of expression of the activity bands of SOD, CAT, GPX, and APX was always higher in the seedlings of tolerant cv. Vandana compared to the sensitive cv. Malviya-36 under both controls as well as stress treatments. Higher intensity of isozymes representing higher activity levels of antioxidative enzymes in the rice seedlings and their further increase under water deficit, Al exposure, or in combination of both the stresses appears to serve as useful marker for specifying a combination of water deficit and Al tolerance in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号