首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Byun KS  Beveridge DL 《Biopolymers》2004,73(3):369-379
The specificity of papilloma virus E2 protein-DNA binding depends critically upon the sequence of a region of the DNA not in direct contact with the protein, and represents one of the simplest known examples of indirect readout. A detailed characterization of this system in solution is important to the further investigation hypothesis of a structural code for DNA recognition by regulatory proteins. In the crystalline state, the E2 DNA oligonucleotide sequence, d(ACCGAATTCGGT), exhibits three different structural forms. We report herein studies of the structure of E2 DNA in solution based on a series of molecular dynamics (MD) simulations including counterions and water, utilizing both the canonical and various crystallographic structures as initial points of departure. All MDs converged on a single dynamical structure of d(ACCGAATTCGGT) in solution. The predicted structure is in close accord with two of the three crystal structures, and indicates that a significant kink in the double helix at the central ApT step in the other crystal molecule may be a packing effect. The dynamical fine structure was analyzed on the basis of helicoidal parameters. The calculated curvature in the sequence was found to originate primarily from YPR steps in the regions flanking the central AATT tract. In order to study the role of structural adaptation of the DNA in the binding process, a subsequent simulation on the 16-mer cognate sequence d(CAACCGAATTCGGTTG) was initiated from the crystallographic coordinates of the bound DNA in the crystal structure of the protein DNA complex. MD simulations starting with the protein-bound form relaxed rapidly back to the dynamical structure predicted from the previous simulations on the uncomplexed DNA. The MD results show that the bound form E2 DNA is a dynamically unstable structure in the absence of protein, and arises as a consequence of both structural changes intrinsic to the sequence and induced by the interaction with protein.  相似文献   

3.
Yun Tang  Lennart Nilsson 《Proteins》1998,31(4):417-433
Molecular dynamics simulations have been conducted to study the interaction of human sex-determining region Y (hSRY) protein with DNA. For this purpose, simulations of the hSRY high mobility group (HMG) domain (hSRY-HMG) with and without its DNA target site, a DNA octamer, and the DNA octamer alone have been carried out, employing the NMR solution structure of hSRY-HMG–DNA complex as a starting model. Analyses of the simulation results demonstrated that the interaction between hSRY and DNA was hydrophobic, just a few hydrogen bonds and only one water molecule as hydrogen-bonding bridge were observed at the protein–DNA interface. These two hydrophobic cores in the hSRY-HMG domain were the physical basis of hSRY-HMG–DNA specific interaction. They not only maintained the stability of the complex, but also primarily caused the DNA deformation. The salt bridges formed between the positive-charged residues of hSRY and phosphate groups of DNA made the phosphate electroneutral, which was advantageous for the deformation of DNA and the formation of a stable complex. We predicted the structure of hSRY-HMG domain in the free state and found that both hSRY and DNA changed their conformations to achieve greater complementarity of geometries and properties during the binding process; that is, the protein increased the angle between its long and short arms to accommodate the DNA, and the DNA became bent severely to adapt to the protein, although the conformational change of DNA was more severe than that of the hSRY-HMG domain. The sequence specificity and the role of residue Met9 are also discussed. Proteins 31:417–433, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Guanine-uracil (G.U) wobble base-pairs are a detrimental lesion in DNA. Previous investigations have shown that such wobble base-pairs are more prone to base-opening than the normal G.C base-pairs. To investigate the sequence-dependence of base-pair opening we have performed 5ns molecular dynamics simulations on G.U wobble base-pairs in two different sequence contexts, TGT/AUA and CGC/GUG. Furthermore, we have investigated the effect of replacing the guanine base in each sequence with a fluorescent guanine analogue, 6-methylisoxanthopterin (6MI). Our results indicate that each sequence opens spontaneously towards the major groove in the course of the simulations. The TGT/AUA sequence has a greater proportion of structures in the open state than the CGC/GUG sequence. Incorporation of 6MI yields wobble base-pairs that open more readily than their guanine counterparts. In order of increasing open population, the sequences are ordered as CGC相似文献   

5.
The discovery of novel anticancer molecules 5F‐203 (NSC703786) and 5‐aminoflavone (5‐AMF, NSC686288) has addressed the issues of toxicity and reduced efficacy by targeting over expressed Cytochrome P450 1A1 (CYP1A1) in cancer cells. CYP1A1 metabolizes these compounds into their reactive metabolites, which are proven to mediate their anticancer effect through DNA adduct formation. However, the drug metabolite–DNA binding has not been explored so far. Hence, understanding the binding characteristics and molecular recognition for drug metabolites with DNA is of practical and fundamental interest. The present study is aimed to model binding preference shown by reactive metabolites of 5F‐203 and 5‐AMF with DNA in forming DNA adducts. To perform this, three different DNA crystal structures covering sequence diversity were selected, and 12 DNA‐reactive metabolite complexes were generated. Molecular dynamics simulations for all complexes were performed using AMBER 11 software after development of protocol for DNA‐reactive metabolite system. Furthermore, the MM‐PBSA/GBSA energy calculation, per‐nucleotide energy decomposition, and Molecular Electrostatic Surface Potential analysis were performed. The results obtained from present study clearly indicate that minor groove in DNA is preferable for binding of reactive metabolites of anticancer compounds. The binding preferences shown by reactive metabolites were also governed by specific nucleotide sequence and distribution of electrostatic charges in major and minor groove of DNA structure. Overall, our study provides useful insights into the initial step of mechanism of reactive metabolite binding to the DNA and the guidelines for designing of sequence specific DNA interacting anticancer agents. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Intrinsically disordered proteins are biomolecules that do not have a definite 3D structure; therefore, their dynamical simulation cannot start from a known list of atomistic positions, such as a Protein Data Bank file. We describe a method to start a computer simulation of these proteins. The first step of the procedure is the creation of a multi-rod configuration of the molecule, derived from its primary sequence. This structure is dynamically evolved in vacuo until its gyration radius reaches the experimental average value; at this point solvent molecules, in explicit or implicit implementation, are added to the protein and a regular molecular dynamics simulation follows. We have applied this procedure to the simulation of tau, one of the largest totally disordered proteins.  相似文献   

7.
State of the art molecular dynamics simulations are used to study the structure, dynamics, molecular interaction properties and flexibility of DNA and RNA duplexes in aqueous solution. Special attention is paid to the deformability of both types of structures, revisiting concepts on the relative flexibility of DNA and RNA duplexes. Our simulations strongly suggest that the concepts of flexibility, rigidity and deformability are much more complex than usually believed, and that it is not always true that DNA is more flexible than RNA.  相似文献   

8.
Resveratrol (RSVL) is a phytoestrogen that occurs naturally in two forms (trans- (E) and cis- (Z)). We have conducted molecular dynamics (MD) studies to differentially characterize the estrogen receptor-alpha (ER-alpha) binding profiles of RSVL stereoisomers. Favorable orientations for RSVL isomers at the ER-alpha pocket were first inferred from (1) alignment with pharmacophoric elements of the pure ER-alpha agonists estradiol (E2) and (2) assessment of ligand recognition by the ER-alpha binding domain. Subsequently, these orientations for RSVL isomers were subjected to MD analyses versus E2. A 100-picosecond MD simulation revealed that E2 contributed four stable hydrogen bonds with the key ER-alpha pocket residue: Arg394, Glu353, His524, and Leu525. Further, E2 displayed favorable binding energy, conformational energy change (DeltaE), and movement of the binding pocket residues (RMSd). Compared to E2, (E)-RSVL lacked a hydrogen bond (HB) with His524 but formed three additional bonds with Gly521, Phe404, and Met343 of the ER-alpha pocket. Further, (E)-RSVL conferred more favorable energy of interaction, less favorable DeltaE, but comparable RMSd values. In contrast, (Z)-RSVL orientations missed hydrogen bonding (HB) with His524 and Leu525, two essential ligand binding residues, and/or produced considerably less favorable-binding energy, -DeltaE, and -RMSd values than did (E)-RSVL. In conclusion, the present study demonstrates the utility of this MD model in distinguishing between RSVL stereoisomers. The weak binding of (Z)-RSVL by the human ER-alpha binding is congruent with its inferior ligand profiles in ER-endowed biological systems. Further, evidence is provided for a considerable variation in the mode of recognition of the mixed agonist/antagonist (E)-RSVL, and the pure agonist E2.  相似文献   

9.
Alkylation of guanine at the O6 atom is a highly mutagenic DNA lesion because it alters the coding specificity of the base causing G:C to A:T transversion mutations. Specific DNA repair enzymes, e.g. O6‐alkylguanin‐DNA‐Transferases (AGT), recognize and repair such damage after looping out the damaged base to transfer it into the enzyme active site. The exact mechanism how the repair enzyme identifies a damaged site within a large surplus of undamaged DNA is not fully understood. The O6‐alkylation of guanine may change the deformability of DNA which may facilitate the initial binding of a repair enzyme at the damaged site. In order to characterize the effect of O6‐methyl‐guanine (O6‐MeG) containing base pairs on the DNA deformability extensive comparative molecular dynamics (MD) simulations on duplex DNA with central G:C, O6‐MeG:C or O6‐MeG:T base pairs were performed. The simulations indicate significant differences in the helical deformability due to the presence of O6‐MeG compared to regular undamaged DNA. This includes enhanced base pair opening, shear and stagger motions and alterations in the backbone fine structure caused in part by transient rupture of the base pairing at the damaged site and transient insertion of water molecules. It is likely that the increased opening motions of O6‐MeG:C or O6‐MeG:T base pairs play a decisive role for the induced fit recognition or for the looping out of the damaged base by repair enzymes. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 23–32, 2015.  相似文献   

10.
Aptamers are rare functional nucleic acids with binding affinity to and specificity for target ligands. Recent experiments have lead to the proposal of an induced‐fit binding mechanism for L ‐argininamide (Arm) and its binding aptamer. However, at the molecular level, this mechanism between the aptamer and its coupled ligand is still poorly understood. The present study used explicit solvent molecular dynamics (MD) simulations to examine the critical bases involved in aptamer‐Arm binding and the induced‐fit binding process at atomic resolution. The simulation results revealed that the Watson‐Crick pair (G10‐C16), C9, A12, and C17 bases play important roles in aptamer‐Arm binding, and that binding of Arm results in an aptamer conformation optimized through a general induced‐fit process. In an aqueous solution, the mechanism has the following characteristic stages: (a) adsorption stage, the Arm anchors to the binding site of aptamer with strong electrostatic interaction; (b) binding stage, the Arm fits into the binding site of aptamer by hydrogen‐bond formation; and (c) complex stabilization stage, the hydrogen bonding and electrostatic interactions cooperatively stabilize the complex structure. This study provides dynamics information on the aptamer‐ligand induced‐fit binding mechanism. The critical bases in aptamer‐ligand binding may provide a guideline in aptamer design for molecular recognition engineering.  相似文献   

11.
R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all‐atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53‐DBD conformation: (i) wild‐type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side‐chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge‐ and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc‐binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. Proteins 2015; 83:2240–2250. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The local dynamics of a double‐stranded DNA d(TpCpGpCpG)2 is obtained to second order in the mode‐coupling expansion of the Smoluchowski diffusion theory. The time correlation functions of bond variables are derived and the 13C‐nmr spin–lattice relaxation times T1 of different 13C along the chains are calculated and compared to experimental data from the literature at three frequencies. The DNA is considered as a fluctuating three‐dimensional structure undergoing rotational diffusion. The fluctuations are evaluated using molecular dynamics simulations, with the ensemble averages approximated by time averages along a trajectory of length 1 ns. Any technique for sampling the configurational space can be used as an alternative. For a fluctuating three‐dimensional (3D) structure using the three first‐order vector modes of lower rates, higher order basis sets of second‐rank tensor are built to give the required mode coupling dynamics. Second‐ and even first‐order theories are found to be in close agreement with the experimental results, especially at high frequency, where the differences in T1 for 13C in the base pairs, sugar, and backbone are well described. These atomistic calculations are of general application for studying, on a molecular basis, the local dynamics of fluctuating 3D structures such as double‐helix DNA fragments, proteins, and protein–DNA complexes. © 1999 John Wiley & Sons, Inc. Biopoly 50: 613–629, 1999  相似文献   

13.
3‐Phosphogycerate kinase (PGK) is a two domain enzyme, with a binding site of the 1,3‐bisphosphoglycerate on the N‐domain and of the ADP on the C‐domain. To transfer a phosphate group the enzyme has to undergo a hinge bending motion from open to closed conformation to bring the substrates to close proximity. Molecular dynamics simulation was used to elucidate the effect of ligand binding onto the domain motions of this enzyme. The simulation results of the apo form indicate a hinge bending motion in the ns timescale while the time period of the hinge bending motion of the complex form is clearly over the 20 ns simulation time. The apo form exhibits several hinge points that contribute to the hinge bending motion while upon binding the ligands, the hinge bending becomes strictly restrained with one dominant hinge point in the vicinity of the substrates. At the same time, ligand binding results in an enhanced correlation of internal domain motions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Thrombin is an attractive target for antithrombotic therapy due to its central role in thrombosis and hemostasis as well as its role in inducing tumor growth, metastasis, and tumor invasion. The thrombin-binding DNA aptamer (TBA), is under investigation for anticoagulant drugs. Although aptamer binding experiments have been revealed various effects on thrombin’s enzymatic activities, the detailed picture of the thrombin’s allostery from TBA binding is still unclear. To investigate thrombin’s response to the aptamer-binding at the molecular level, we compare the mechanical properties and free energy landscapes of the free and aptamer-bound thrombin using microsecond-scale all-atom GPU-based molecular dynamics simulations. Our calculations on residue fluctuations and coupling illustrate the allosteric effects of aptamer-binding at the atomic level, highlighting the exosite II, 60s, γ and the sodium loops, and the alpha helix region in the light chains involved in the allosteric changes. This level of details clarifies the mechanisms of previous experimentally demonstrated phenomena, and provides a prediction of the reduced autolysis rate after aptamer-binding. The shifts in thrombin’s ensemble of conformations and free energy surfaces after aptamer-binding demonstrate that the presence of bound-aptamer restricts the conformational freedom of thrombin suggesting that conformational selection, i.e. generalized allostery, is the dominant mechanism of thrombin-aptamer binding. The profound perturbation on thrombin’s mechanical and thermodynamic properties due to the aptamer-binding, which was revealed comprehensively as a generalized allostery in this work, may be exploited in further drug discovery and development.  相似文献   

15.
Molecular beacons for detecting DNA binding proteins: mechanism of action   总被引:3,自引:0,他引:3  
New methodology for detecting sequence-specific DNA binding proteins has been recently developed (T. Heyduk, and E. Heyduk, Nat. Biotechnol. 20 (2002) 171). The central feature of this assay is protein-dependent association of two DNA fragments, each containing about half of a DNA sequence-defining the protein binding site. In this report we propose a physical model explaining the functioning of the assay. The model involves two linked equilibria: association between the two DNA fragments and binding of the protein exclusively to the complex between the two DNA fragments. Equilibrium and kinetic experiments provided evidence supporting the proposed model and showed that the model was sufficient to describe the behavior of the assay under a variety of conditions. Kinetic data identified the association between the two DNA half-sites as the rate-limiting step of the assay. Theoretical simulations based on the proposed model were used to investigate parameters important for the maximal sensitivity of the assay. Physical understanding of the assay will provide means for rational design of the assay for a variety of target proteins.  相似文献   

16.
The assembly of protein actin into double-helical filaments promotes many eukaryotic cellular processes that are regulated by actin-binding proteins (ABPs). Actin filaments can adopt multiple conformations, known as structural polymorphism, which possibly influences the interaction between filaments and ABPs. Gelsolin is a Ca2+-regulated ABP that severs and caps actin filaments. Gelsolin binding modulates filament structure; however, it is not known how polymorphic actin filament structures influence an interaction of gelsolin S1 with the barbed-end of filament. Herein, we investigated how polymorphic structures of actin filaments affect the interactions near interfaces between the gelsolin segment 1 (S1) domain and the filament barbed-end. Using all-atom molecular dynamics simulations, we demonstrate that different tilted states of subunits modulate gelsolin S1 interactions with the barbed-end of polymorphic filaments. Hydrogen bonding and interaction energy at the filament-gelsolin S1 interface indicate distinct conformations of filament barbed ends, resulting in different interactions of gelsolin S1. This study demonstrates that filament's structural multiplicity plays important roles in the interactions of actin with ABPs.  相似文献   

17.
The RNA recognition motif (RRM) is one of the most common RNA binding domains. We have investigated the contribution of three highly conserved aromatic amino acids to RNA binding by the N-terminal RRM of the U1A protein. Recently, we synthesized a modified base (A-4CPh) in which a phenyl group is tethered to adenine using a linker of 4 methylene groups. The substitution of this base for adenine in the target RNA selectively stabilizes the complex formed with a U1A protein in which one of the conserved aromatic amino acids is replaced with Ala (Phe56Ala). In this article, we report molecular dynamics (MD) simulations that probe the structural consequences of the substitution of A-4CPh for adenine in the wild type and Phe56Ala U1A-RNA complexes and in the free RNA. The simulations suggest that A-4CPh stabilizes the complex formed with Phe56Ala by adopting a folded conformation in which the tethered phenyl group fills the site occupied by the phenyl group of Phe56 in the wild-type complex. In contrast, an extended conformation of A-4CPh is predicted to be most stable in the complex formed with the wild-type protein. The calculations indicate A-4CPh is in an extended conformation in the free RNA. Therefore, preorganizing the structure of the phenyl-tethered base for binding may improve both the affinity and specificity of the RNA containing A-4CPh for the Phe56Ala U1A protein. Taken together, the previous experimental work and the calculations reported here suggest a general design strategy for altering RRM-RNA complex stability.  相似文献   

18.
The thermal properties of two forms of the Drosophila melanogaster HMG-D protein, with and without its highly basic 26 residue C-terminal tail (D100 and D74) and the thermodynamics of their non-sequence-specific interaction with linear DNA duplexes were studied using scanning and titration microcalorimetry, spectropolarimetry, fluorescence anisotropy and FRET techniques at different temperatures and salt concentrations. It was shown that the C-terminal tail of D100 is unfolded at all temperatures, whilst the state of the globular part depends on temperature in a rather complex way, being completely folded only at temperatures close to 0 degrees C and unfolding with significant heat absorption at temperatures below those of the gross denaturational changes. The association constant and thus Gibbs energy of binding for D100 is much greater than for D74 but the enthalpies of their association are similar and are large and positive, i.e. DNA binding is a completely entropy-driven process. The positive entropy of association is due to release of counterions and dehydration upon forming the protein/DNA complex. Ionic strength variation showed that electrostatic interactions play an important but not exclusive role in the DNA binding of the globular part of this non-sequence-specific protein, whilst binding of the positively charged C-terminal tail of D100 is almost completely electrostatic in origin. This interaction with the negative charges of the DNA phosphate groups significantly enhances the DNA bending. An important feature of the non-sequence-specific association of these HMG boxes with DNA is that the binding enthalpy is significantly more positive than for the sequence-specific association of the HMG box from Sox-5, despite the fact that these proteins bend the DNA duplex to a similar extent. This difference shows that the enthalpy of dehydration of apolar groups at the HMG-D/DNA interface is not fully compensated by the energy of van der Waals interactions between these groups, i.e. the packing density at the interface must be lower than for the sequence-specific Sox-5 HMG box.  相似文献   

19.
Anti-cancer drugs, such as cisplatin and oxaliplatin, covalently bind to adjacent guanine bases in DNA to form intra-strand adducts. Differential recognition of drug–DNA adducts by the protein HMGB1a has been related to the differences in efficacy of these drugs in tumours. Additionally, the bases flanking the adduct (the sequence context) also have a marked effect on HMGB1a binding affinity. We perform atomistic molecular dynamics simulations of DNA with cisplatin and oxaliplatin adducts in four sequence contexts (AGGC, CGGA, TGGA and TGGT) in the absence and presence of HMGB1a. The structure of HMGB1a-bound drug–DNA molecules is independent of sequence and drug identity, confirming that differential recognition cannot be explained by the protein-bound structure. The differences in the static and conformational dynamics of the drug–DNA structures in the absence of the protein explain some but not all trends in differential binding affinity of HMGB1a. Since the minor groove width and helical bend of all drug–DNA molecules in the unbound state are lower than the protein-bound state, HMGB1a must actively deform the DNA during binding. The thermodynamic pathway between the unbound and protein-bound states could be an additional factor in the binding affinity of HMGB1a for drug–DNA adducts in various sequence contexts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号