首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach of predicting structural classes of protein domain sequences is presented in this paper. Besides the amino acid composition, the composition of several dipeptides, tripeptides, tetrapeptides, pentapeptides and hexapeptides are taken into account based on the stepwise discriminant analysis. The result of jackknife test shows that this new approach can lead to higher predictive sensitivity and specificity for reduced sequence similarity datasets. Considering the dataset PDB40-B constructed by Brenner and colleagues, 75.2% protein domain sequences are correctly assigned in the jackknife test for the four structural classes: all-alpha, all-beta, alpha/beta and alpha + beta, which is improved by 19.4% in jackknife test and 25.5% in resubstitution test, in contrast with the component-coupled algorithm using amino acid composition alone (AAC approach) for the same dataset. In the cross-validation test with dataset PDB40-J constructed by Park and colleagues, more than 80% predictive accuracy is obtained. Furthermore, for the dataset constructed by Chou and Maggiona, the accuracy of 100% and 99.7% can be easily achieved, respectively, in the resubstitution test and in the jackknife test merely taking the composition of dipeptides into account. Therefore, this new method provides an effective tool to extract valuable information from protein sequences, which can be used for the systematic analysis of small or medium size protein sequences. The computer programs used in this paper are available on request.  相似文献   

2.
An improved multiple linear regression method has been proposed to predict the content of alpha-helix and beta-strand of a globular protein based on its primary sequence and structural class. The amino acid composition and the auto-correlation functions derived from the hydrophobicity profile of the primary sequence have been taken into account. However, only the compositions of a part of the amino acids and a part of the auto-correlation functions are selected as the regression terms, which lead to the least prediction error. The resubstitution test shows that the average absolute errors are 0.052 and 0.047 with the standard deviations 0.050 and 0.047 for the prediction of helix/strand content, respectively. A rigorous cross-validation test, the jackknife test shows that the average absolute errors are 0.058 and 0.053 with the standard deviations 0.057 and 0.053 for the prediction of helix/strand content, respectively. Both tests indicate the self-consistency and the extrapolating effectiveness of the new method. The high prediction accuracy means that the method is suitable for practical applications.  相似文献   

3.
In this paper, support vector machines (SVMs) are applied to predict the nucleic-acid-binding proteins. We constructed two classifiers to differentiate DNA/RNA-binding proteins from non-nucleic-acid-binding proteins by using a conjoint triad feature which extract information directly from amino acids sequence of protein. Both self-consistency and jackknife tests show promising results on the protein datasets in which the sequences identity is less than 25%. In the self-consistency test, the predictive accuracy is 90.37% for DNA-binding proteins and 89.70% for RNA-binding proteins. In the jackknife test, the predictive accuracies are 78.93% and 76.75%, respectively. Comparison results show that our method is very competitive by outperforming other previously published sequence-based prediction methods.  相似文献   

4.

Background

Subcellular localization of a new protein sequence is very important and fruitful for understanding its function. As the number of new genomes has dramatically increased over recent years, a reliable and efficient system to predict protein subcellular location is urgently needed.

Results

Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins based on amino acid composition. In this research, the proteins are classified into the following eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria, nucleus and peroxisome. We know subcellular localization is a typical classification problem; consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to construct the classifier. Unlike previous methods, ours considers the order information of protein sequences by a different method. Our method is tested in three subcellular localization predictions for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on Reinhardt's dataset. The results are then compared to several other methods. The total prediction accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are 100% by a self-consistency test and 87% by the jackknife test.

Conclusions

Our method represents a different approach for predicting protein subcellular localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool for predicting protein subcellular localizations in eukaryotic organisms.
  相似文献   

5.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

6.
The location of a protein in a cell is closely correlated with its biological function. Based on the concept that the protein subcellular location is mainly determined by its amino acid and pseudo amino acid composition (PseAA), a new algorithm of increment of diversity combined with support vector machine is proposed to predict the protein subcellular location. The subcellular locations of plant and non-plant proteins are investigated by our method. The overall prediction accuracies in jackknife test are 88.3% for the eukaryotic plant proteins and 92.4% for the eukaryotic non-plant proteins, respectively. In order to estimate the effect of the sequence identity on predictive result, the proteins with sequence identity 相似文献   

7.
Gao QB  Wang ZZ  Yan C  Du YH 《FEBS letters》2005,579(16):3444-3448
To understand the structure and function of a protein, an important task is to know where it occurs in the cell. Thus, a computational method for properly predicting the subcellular location of proteins would be significant in interpreting the original data produced by the large-scale genome sequencing projects. The present work tries to explore an effective method for extracting features from protein primary sequence and find a novel measurement of similarity among proteins for classifying a protein to its proper subcellular location. We considered four locations in eukaryotic cells and three locations in prokaryotic cells, which have been investigated by several groups in the past. A combined feature of primary sequence defined as a 430D (dimensional) vector was utilized to represent a protein, including 20 amino acid compositions, 400 dipeptide compositions and 10 physicochemical properties. To evaluate the prediction performance of this encoding scheme, a jackknife test based on nearest neighbor algorithm was employed. The prediction accuracies for cytoplasmic, extracellular, mitochondrial, and nuclear proteins in the former dataset were 86.3%, 89.2%, 73.5% and 89.4%, respectively, and the total prediction accuracy reached 86.3%. As for the prediction accuracies of cytoplasmic, extracellular, and periplasmic proteins in the latter dataset, the prediction accuracies were 97.4%, 86.0%, and 79.7, respectively, and the total prediction accuracy of 92.5% was achieved. The results indicate that this method outperforms some existing approaches based on amino acid composition or amino acid composition and dipeptide composition.  相似文献   

8.
A new algorithm to predict the types of membrane proteins is proposed. Besides the amino acid composition of the query protein, the information within the amino acid sequence is taken into account. A formulation of the autocorrelation functions based on the hydrophobicity index of the 20 amino acids is adopted. The overall predictive accuracy is remarkably increased for the database of 2054 membrane proteins studied here. An improvement of about 13% in the resubstitution test and 8% in the jackknife test is achieved compared with those of algorithms based merely on the amino acid composition. Consequently, overall predictive accuracy is as high as 94% and 82% for the resubstitution and jackknife tests, respectively, for the prediction of the five types. Since the proposed algorithm is based on more parameters than those in the amino acid composition approach, the predictive accuracy would be further increased for a larger and more class-balanced database. The present algorithm should be useful in the determination of the types and functions of new membrane proteins. The computer program is available on request.  相似文献   

9.
A genetic algorithm (GA) for feature selection in conjunction with neural network was applied to predict protein structural classes based on single amino acid and all dipeptide composition frequencies. These sequence parameters were encoded as input features for a GA in feature selection procedure and classified with a three-layered neural network to predict protein structural classes. The system was established through optimization of the classification performance of neural network which was used as evaluation function. In this study, self-consistency and jackknife tests on a database containing 498 proteins were used to verify the performance of this hybrid method, and were compared with some of prior works. The adoption of a hybrid model, which encompasses genetic and neural technologies, demonstrated to be a promising approach in the task of protein structural class prediction.  相似文献   

10.
Shen HB  Chou KC 《Amino acids》2007,32(4):483-488
Predicting membrane protein type is both an important and challenging topic in current molecular and cellular biology. This is because knowledge of membrane protein type often provides useful clues for determining, or sheds light upon, the function of an uncharacterized membrane protein. With the explosion of newly-found protein sequences in the post-genomic era, it is in a great demand to develop a computational method for fast and reliably identifying the types of membrane proteins according to their primary sequences. In this paper, a novel classifier, the so-called "ensemble classifier", was introduced. It is formed by fusing a set of nearest neighbor (NN) classifiers, each of which is defined in a different pseudo amino acid composition space. The type for a query protein is determined by the outcome of voting among these constituent individual classifiers. It was demonstrated through the self-consistency test, jackknife test, and independent dataset test that the ensemble classifier outperformed other existing classifiers widely used in biological literatures. It is anticipated that the idea of ensemble classifier can also be used to improve the prediction quality in classifying other attributes of proteins according to their sequences.  相似文献   

11.
At present, accuracies of secondary structural prediction scarcely go beyond 70-75%. Secondary structural comparison is carried out among sequence-identified proteins. The results show natural wobble between different secondary structural types is possible in homologous families, and the best prediction accuracy will rarely be 100%. Besides shortcoming of the prediction approaches, secondary structural wobble is found to be responsible for nearly all secondary structural prediction limits. Only average 73.2% of amino acid residue is conserved in secondary structural types. The wobble allows alpha-class/coil and beta-class/coil transitions but not direct alpha-class/beta-class transition. Propensity values representing the statistical occurrence of 20 amino acid residues in secondary structural wobbles are given.  相似文献   

12.
Due to the increasing gap between structure-determined and sequenced proteins, prediction of protein structural classes has been an important problem. It is very important to use efficient sequential parameters for developing class predictors because of the close sequence-structure relationship. The multinomial logistic regression model was used for the first time to evaluate the contribution of sequence parameters in determining the protein structural class. An in-house program generated parameters including single amino acid and all dipeptide composition frequencies. Then, the most effective parameters were selected by a multinomial logistic regression. Selected variables in the multinomial logistic model were Valine among single amino acid composition frequencies and Ala-Gly, Cys-Arg, Asp-Cys, Glu-Tyr, Gly-Glu, His-Tyr, Lys-Lys, Leu-Asp, Leu-Arg, Pro-Cys, Gln-Met, Gln-Thr, Ser-Trp, Val-Asn and Trp-Asn among dipeptide composition frequencies. Also a neural network model was constructed and fed by the parameters selected by multinomial logistic regression to build a hybrid predictor. In this study, self-consistency and jackknife tests on a database constructed by Zhou [1998. An intriguing controversy over protein structural class prediction. J. Protein Chem. 17(8), 729-738] containing 498 proteins are used to verify the performance of this hybrid method, and are compared with some of prior works. The results showed that our two-stage hybrid model approach is very promising and may play a complementary role to the existing powerful approaches.  相似文献   

13.
We present an approach to predicting protein structural class that uses amino acid composition and hydrophobic pattern frequency information as input to two types of neural networks: (1) a three-layer back-propagation network and (2) a learning vector quantization network. The results of these methods are compared to those obtained from a modified Euclidean statistical clustering algorithm. The protein sequence data used to drive these algorithms consist of the normalized frequency of up to 20 amino acid types and six hydrophobic amino acid patterns. From these frequency values the structural class predictions for each protein (all-alpha, all-beta, or alpha-beta classes) are derived. Examples consisting of 64 previously classified proteins were randomly divided into multiple training (56 proteins) and test (8 proteins) sets. The best performing algorithm on the test sets was the learning vector quantization network using 17 inputs, obtaining a prediction accuracy of 80.2%. The Matthews correlation coefficients are statistically significant for all algorithms and all structural classes. The differences between algorithms are in general not statistically significant. These results show that information exists in protein primary sequences that is easily obtainable and useful for the prediction of protein structural class by neural networks as well as by standard statistical clustering algorithms.  相似文献   

14.
Cai YD  Liu XJ  Xu XB  Chou KC 《Peptides》2002,23(1):205-208
Support Vector Machines (SVMs) which is one kind of learning machines, was applied to predict the specificity of GalNAc-transferase. The examination for the self-consistency and the jackknife test of the SVMs method were tested for the training dataset (305 oligopeptides), the correct rate of self-consistency and jackknife test reaches 100% and 84.9%, respectively. Furthermore, the prediction of the independent testing dataset (30 oligopeptides) was tested, the rate reaches 76.67%.  相似文献   

15.
Based on Bayesian Networks, methods were created that address protein sequence-based bacterial subcellular location prediction. Distinct predictive algorithms for the eight bacterial subcellular locations were created. Several variant methods were explored. These variations included differences in the number of residues considered within the query sequence - which ranged from the N-terminal 10 residues to the whole sequence - and residue representation - which took the form of amino acid composition, percentage amino acid composition, or normalised amino acid composition. The accuracies of the best performing networks were then compared to PSORTB. All individual location methods outperform PSORTB except for the Gram+ cytoplasmic protein predictor, for which accuracies were essentially equal, and for outer membrane protein prediction, where PSORTB outperforms the binary predictor. The method described here is an important new approach to method development for subcellular location prediction. It is also a new, potentially valuable tool for candidate subunit vaccine selection.  相似文献   

16.
Wang ZX  Yuan Z 《Proteins》2000,38(2):165-175
Proteins of known structures are usually classified into four structural classes: all-alpha, all-beta, alpha+beta, and alpha/beta type of proteins. A number of methods to predicting the structural class of a protein based on its amino acid composition have been developed during the past few years. Recently, a component-coupled method was developed for predicting protein structural class according to amino acid composition. This method is based on the least Mahalanobis distance principle, and yields much better predicted results in comparison with the previous methods. However, the success rates reported for structural class prediction by different investigators are contradictory. The highest reported accuracies by this method are near 100%, but the lowest one is only about 60%. The goal of this study is to resolve this paradox and to determine the possible upper limit of prediction rate for structural classes. In this paper, based on the normality assumption and the Bayes decision rule for minimum error, a new method is proposed for predicting the structural class of a protein according to its amino acid composition. The detailed theoretical analysis indicates that if the four protein folding classes are governed by the normal distributions, the present method will yield the optimum predictive result in a statistical sense. A non-redundant data set of 1,189 protein domains is used to evaluate the performance of the new method. Our results demonstrate that 60% correctness is the upper limit for a 4-type class prediction from amino acid composition alone for an unknown query protein. The apparent relatively high accuracy level (more than 90%) attained in the previous studies was due to the preselection of test sets, which may not be adequately representative of all unrelated proteins.  相似文献   

17.
The successful prediction of protein subcellular localization directly from protein primary sequence is useful to protein function prediction and drug discovery. In this paper, by using the concept of pseudo amino acid composition (PseAAC), the mycobacterial proteins are studied and predicted by support vector machine (SVM) and increment of diversity combined with modified Mahalanobis Discriminant (IDQD). The results of jackknife cross-validation for 450 non-redundant proteins show that the overall predicted successful rates of SVM and IDQD are 82.2% and 79.1%, respectively. Compared with other existing methods, SVM combined with PseAAC display higher accuracies.  相似文献   

18.
In order to establish novel hybrid neural discriminant model, linear discriminant analysis (LDA) was used at the first stage to evaluate the contribution of sequence parameters in determining the protein structural class. An in-house program generated parameters including single amino acid and all dipeptide composition frequencies for 498 proteins came from Zhou [An intriguing controversy over protein structural class prediction, J. Protein Chem. 17(8) (1998) 729-738]. Then, 127 statistically effective parameters were selected by stepwise LDA and were used as inputs of the artificial neural networks (ANNs) to build a two-stage hybrid predictor. In this study, self-consistency and jackknife tests were used to verify the performance of this hybrid model, and were compared with some of prior works. The results showed that our two-stage hybrid neural discriminant model approach is very promising and may play a complementary role to the existing powerful approaches.  相似文献   

19.
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Prediction of protein (domain) structural classes based on amino-acid index.   总被引:10,自引:0,他引:10  
A protein (domain) is usually classified into one of the following four structural classes: all-alpha, all-beta, alpha/beta and alpha + beta. In this paper, a new formulation is proposed to predict the structural class of a protein (domain) from its primary sequence. Instead of the amino-acid composition used widely in the previous structural class prediction work, the auto-correlation functions based on the profile of amino-acid index along the primary sequence of the query protein (domain) are used for the structural class prediction. Consequently, the overall predictive accuracy is remarkably improved. For the same training database consisting of 359 proteins (domains) and the same component-coupled algorithm [Chou, K.C. & Maggiora, G.M. (1998) Protein Eng. 11, 523-538], the overall predictive accuracy of the new method for the jackknife test is 5-7% higher than the accuracy based only on the amino-acid composition. The overall predictive accuracy finally obtained for the jackknife test is as high as 90.5%, implying that a significant improvement has been achieved by making full use of the information contained in the primary sequence for the class prediction. This improvement depends on the size of the training database, the auto-correlation functions selected and the amino-acid index used. We have found that the amino-acid index proposed by Oobatake and Ooi, i.e. the average nonbonded energy per residue, leads to the optimal predictive result in the case for the database sets studied in this paper. This study may be considered as an alternative step towards making the structural class prediction more practical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号