首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Heterotrimeric G proteins play important roles as signal transducing components in various mammalian sperm functions. We were interested in the distribution of G proteins in human sperm tails. Prior to membrane preparation, spermatozoa were separated from contaminating cells which are frequently present in human ejaculates. Enriched human sperm tail membranes were generated by using hypoosmotic swelling and homogenization procedures. Antisera against synthetic peptides were used to identify G proteins in immunoblots. AS 8, an antiserum directed against an amino acid sequence that is found in most G protein α-subunits, and A 86, which detects all known pertussis toxin-sensitive α-subunits, reacted specifically with a 40-kDa protein. Antisera against individual G protein α-subunits failed to detect any specific antigens in enriched tail membranes AS 36, recognizing the ã2-subunit of G proteins, identified a 35-kDa protein in sperm tail membranes. Antisera against the 36-kDa β1-subunit did not detect any relevant proteins in the membrane fraction. Neither G protein α-subunits nor G protein β-subunits were found in the cytosol. ADP ribosylation of spermatozoal membrane or cytosolic proteins revealed no pertussis toxin-sensitive α-subunits. However, membrane preparations of nonpurified human spermatozoa contained α2 subunits, as shown immunologically and by ADP ribosylation; they most probably derived from somatic cells which are frequently present in human ejaculates. Our results stress the fact that spermatozoa need to be purified before sperm membrane preparation to avoid misinterpretations caused by contaminating cells. Furthermore, we suggest that G proteins in membranes of human sperm tails belong to a novel subtype of G protein α-subunits; the putative β-subunit was identified as a β2-subunit. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Donald T. Downing 《Proteins》1995,23(2):204-217
Mammalian epidermal keratin molecules adopt rod-shaped conformations that aggregate to form cytoplasmic intermediate filaments. To investigate these keratin conformations and the basis for their patterns of molecular association, graphical methods were developed to relate known amino acid sequences to probable spacial configurations. The results support the predominantly α-helical conformation of keratin chains, interrupted by short non-α-helical linkages. However, it was found that many of the linkages have amino acid sequences typical of β-strand conformations. Space-filling atomic models revealed that the β-strand sequences would permit the formation of 2-chain and 4-chain cylindrical β-helices, fully shielding the hydrophobic amino acid chains that alternate with hydrophilic residues in these sequences. Because of the locations of the β-helical regions in human and mouse stratum corneum keratin chains, only homodimers of the keratins could interact efficiently to form 2-chain and 4-chain β-helices. Tetramers having the directions and degrees of overlap of constituent dimers that have been identified by previous investigators are also predicted from the interactions of β-helical motifs. Heterotetramers formed from dissimilar homodimers could combine, through additional β-helical structures, to form higher oligomers having the dimensions seen in electron microscopic studies. Previous results from chemical crosslinking studies can be interpreted to support the concept of homodimers rather than heterodimers as the basis for keratin filament assembly. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

5.
α-Prolamins are the major seed storage proteins of species of the grass tribe Andropogonea. They are unusually rich in glutamine, proline, alanine, and leucine residues and their sequences show a series of tandem repeats presumed to be the result of multiple intragenic duplication. Two new sequences of α-prolamin clones from Coix (pBCX25.12 and pBCX25.10) are compared with similar clones from maize and Sorghum in order to investigate evolutionary relationships between the repeat motifs and to propose a schematic model for their three-dimensional structure based on hydrophobic membrane-helix propensities and helical “wheels.” A scheme is proposed for the most recent events in the evolution of the central part of the molecule (repeats 3 to 8) which involves two partial intragenic duplications and in which contemporary odd-numbered and even-numbered repeats arise from common ancestors, respectively. Each pair of repeats is proposed to form an antiparallel α-helical hairpin and that the helices of the molecule as a whole are arranged on a hexagonal net. The majority of helices show six faces of alternating hydrophobic and polar residues, which give rise to intersticial holes around each helix which alternate in chemical character. The model is consistent with proteins which contain different numbers of repeats, with oligomerization and with the dense packaging of α-prolamins within the protein body of the seed endosperm. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
A major bottleneck in the field of biochemistry is our limited understanding of the processes by which a protein folds into its native conformation. Much of the work on this issue has focused on the conserved core of the folded protein. However, one might imagine that a ubiquitous motif for unaided folding or for the recognition of chaperones may involve regions on the surface of the native structure. We explore this possibility by an analysis of the spatial distribution of regions with amphiphilic α-helical potential on the surface of β-sheet proteins. All proteins, Including β-sheet proteins, contain regions with amphiphilic α-helical potential. That is, any α-helix formed by that region would be amphiphilic, having both hydrophobic and hydrophilic surfaces. In the three-dimensional structure of all β-sheet proteins analyzed, we have found a distinct pattern in the spatial distribution of sequences with amphiphilic α-helical potential. The amphiphilic regions occur in ring shaped clusters approximately 20 to 30 Å in diameter on the surface of the protein. In addition, these regions have a strong preference for positively charged amino acids and a lower preference for residues not favorable to α-helix formation. Although the purpose of these amphiphilic regions which are not associated with naturally occurring α-helix is unknown, they may play a critical role in highly conserved processes such as protein folding. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Three β-adrenergic receptor subtypes are now known to be functionally expressed in mammals. All three belong to the R7G family of receptors coupled to G-proteins, and characterized by an extracellular glycosylated N-terminal and an intracellular C-terminal region and seven transmembrane domains, linked by three exta- and three intracellular loops. The catecholamine ligand binding domain, studied using affinity-labeling and site-directed mutagenesis, is a pocket lined by residues belonging to the transmembrane domains. The region responsible for the interaction with the Gs protein which, when activated, stimulates adenylyl cyclase, is composed of residues belonging to the parts most proximal to the membrane of intracellular loop i3 and the C-terminal region. The pharmacology of the three subtypes is quite distinct: in fact most of the potent β12 antagonists (the well known β blockers) act as agonists on β3. The subtype is resistant to short-term desensitization mediated by phosphorylation through PKA or βARK, in stark contrast to the β1 or β2 subtypes. Various compounds (dexamethasone, butyrate, insulin) up regulate β1 or β1 subtypes while down-regulating β3 whose expression strictly correlates with differentiation of 3T3-F442A fibroblasts into adipocytes, thus confirming that the expression of the three subtypes may each be regulated independently to exert a specific physiologic role in different tissues or at different stages of development.  相似文献   

9.
The secondary structure of DnaA protein and its interaction with DNA and ribonucleotides has been predicted using biochemical, biophysical techniques, and prediction methods based on multiple-sequence alignment and neural networks. The core of all proteins from the DnaA family consists of an “open twisted α/β structure,” containing five α-helices alternating with five β-strands. In our proposed structural model the interior of the core is formed by a parallel β-sheet, whereas the α-helices are arranged on the surface of the core. The ATP-binding motif is located within the core, in a loop region following the first β-strand. The N-terminal domain (80 aa) is composed of two α-helices, the first of which contains a potential leucine zipper motif for mediating protein-protein interaction, followed by a β-strand and an additional α-helix. The N-terminal domain and the α/β core region of DnaA are connected by a variable loop (45–70 aa); major parts of the loop region can be deleted without loss of protein activity. The C-terminal DNA-binding domain (94 aa) is mostly α-helical and contains a potential helix-loop-helix motif. DnaA protein does not dimerize in solution; instead, the two longest C-terminal α-helices could interact with each other, forming an internal “coiled coil” and exposing highly basic residues of a small loop region on the surface, probably responsible for DNA backbone contacts. © 1997 Wiley-Liss Inc.  相似文献   

10.
The amino acid sequences of 22 α-amylases from family 13 of glycosyl hydrolases were analyzed with the aim of revealing the evolutionary relationships between the archaeal α-amylases and their eubacterial and eukaryotic counterparts. Two evolutionary distance trees were constructed: (i) the first one based on the alignment of extracted best-conserved sequence regions (58 residues) comprising β2, β3, β4, β5, β7, and β8 strand segments of the catalytic (α/β)8-barrel and a short conserved stretch in domain B protruding out of the barrel in the β3 →α3 loop, and (ii) the second one based on the alignment of the substantial continuous part of the (α/β)8-barrel involving the entire domain B (consensus length: 386 residues). With regard to archaeal α-amylases, both trees compared brought, in fact, the same results; i.e., all family 13 α-amylases from domain Archaea were clustered with barley pI isozymes, which represent all plant α-amylases. The enzymes from Bacillus licheniformis and Escherichia coli, representing liquefying and cytoplasmic α-amylases, respectively, seem to be the further closest relatives to archaeal α-amylases. This evolutionary relatedness clearly reflects the discussed similarities in the amino acid sequences of these α-amylases, especially in the best-conserved sequence regions. Since the results for α-amylases belonging to all three domains (Eucarya, Eubacteria, Archaea) offered by both evolutionary trees are very similar, it is proposed that the investigated conserved sequence regions may indeed constitute the ``sequence fingerprints' of a given α-amylase. Received: 3 June 1998 / Accepted: 20 August 1998  相似文献   

11.
Kuo-Chen Chou 《Proteins》1995,21(4):319-344
The development of prediction methods based on statistical theory generally consists of two parts: one is focused on the exploration of new algorithms, and the other on the improvement of a training database. The current study is devoted to improving the prediction of protein structural classes from both of the two aspects. To explore a new algorithm, a method has been developed that makes allowance for taking into account the coupling effect among different amino acid components of a protein by a covariance matrix. To improve the training database, the selection of proteins is carried out so that they have (1) as many non-homologous structures as possible, and (2) a good quality of structure. Thus, 129 representative proteins are selected. They are classified into 30 α, 30 β, 30 α + β, 30 α/β, and 9 ζ (irregular) proteins according to a new criterion that better reflects the feature of the structural classes concerned. The average accuracy of prediction by the current method for the 4 × 30 regular proteins is 99.2%, and that for 64 independent testing proteins not included in the training database is 95.3%. To further validate its efficiency, a jackknife analysis has been performed for the current method as well as the previous ones, and the results are also much in favor of the current method. To complete the mathematical basis, a theorem is presented and proved in Appendix A that is instructive for understanding the novel method at a deeper level. © 1995 Wiley-Liss, Inc.  相似文献   

12.
R. Rajgaria  Y. Wei  C. A. Floudas 《Proteins》2010,78(8):1825-1846
An integer linear optimization model is presented to predict residue contacts in β, α + β, and α/β proteins. The total energy of a protein is expressed as sum of a Cα? Cα distance dependent contact energy contribution and a hydrophobic contribution. The model selects contact that assign lowest energy to the protein structure as satisfying a set of constraints that are included to enforce certain physically observed topological information. A new method based on hydrophobicity is proposed to find the β‐sheet alignments. These β‐sheet alignments are used as constraints for contacts between residues of β‐sheets. This model was tested on three independent protein test sets and CASP8 test proteins consisting of β, α + β, α/β proteins and it was found to perform very well. The average accuracy of the predictions (separated by at least six residues) was ~61%. The average true positive and false positive distances were also calculated for each of the test sets and they are 7.58 Å and 15.88 Å, respectively. Residue contact prediction can be directly used to facilitate the protein tertiary structure prediction. This proposed residue contact prediction model is incorporated into the first principles protein tertiary structure prediction approach, ASTRO‐FOLD. The effectiveness of the contact prediction model was further demonstrated by the improvement in the quality of the protein structure ensemble generated using the predicted residue contacts for a test set of 10 proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Adipocyte precursors from the stromal vascular fraction of human adipose tissue were allowed to differentiate in serum-free defined medium, whereafter their catecholamine stimulated lipolytic response was compared to that of mature isolated human adipocytes. Seventy-five to ninety percent of the fibroblast-like cells accumulated lipid droplets and glycerol-3-phosphate dehydrogenase activities of 1,000–2,800 mU/mg protein were measured in cell homogenates of differentiated cells. Lipolysis could be stimulated by both isoproterenol and norepinephrine in both differentiated preadipocytes as well as mature adipocytes. The results obtained with β-adrenergic agents suggested the presence of a higher affinity receptor in differentiated preadipocytes as compared to mature adipocytes. Mature adipocytes responded well to β-adrenergic agents, but no antilipolytic α2-adrenergic response was observed in the differentiated preadipocytes. The presence of Gi proteins in the differentiated preadipocytes was suggested by the antilipolytic effect of adenosine as well as the lipolytic activity generated by pertussis toxin. In conclusion, our medium supported the differentiation of a very high percentage of human preadipocytes which developed a sensitive β-adrenergic lipolytic response but which lacked an α2-adrenergic antilipolytic response.  相似文献   

14.
An empirical relation between the amino acid composition and three-dimensional folding pattern of several classes of proteins has been determined. Computer simulated neural networks have been used to assign proteins to one of the following classes based on their amino acid composition and size: (1) 4α-helical bundles, (2) parallel (α/β)8 barrels, (3) nucleotide binding fold, (4) immunoglobulin fold, or (5) none of these. Networks trained on the known crystal structures as well as sequences of closely related proteins are shown to correctly predict folding classes of proteins not represented in the training set with an average accuracy of 87%. Other folding motifs can easily be added to the prediction scheme once larger databases become available. Analysis of the neural network weights reveals that amino acids favoring prediction of a folding class are usually over represented in that class and amino acids with unfavorable weights are underrepresented in composition. The neural networks utilize combinations of these multiple small variations in amino acid composition in order to make a prediction. The favorably weighted amino acids in a given class also form the most intramolecular interactions with other residues in proteins of that class. A detailed examination of the contacts of these amino acids reveals some general patterns that may help stabilize each folding class. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Two separate unrefined models for the secondary structure of two subfamilies of the 6-phospho-β-D -galactosidase superfamily were independently constructed by examining patterns of variation and conservation within homologous protein sequences, assigning surface, interior, parsing, and active site residues to positions in the alignment, and identifying periodicities in these. A consensus model for the secondary structure of the entire superfamily was then built. The prediction tests the limits of an unrefined prediction made using this approach in a large protein with substantial functional and sequence divergence within the family. The protein belongs to the (α–β class), with the core β strands aligned parallel. The supersecondary structural elements that are readily identified in this model is a parallel β sheet built by strands C, D, and E, with helices 2 and 3 connecting strands (C + D) and (D + E), respectively, and an analogous α–β unit (strand G and helix 7) toward the end of the sequence. The resemblance of the supersecondary model to the tertiary structure formed by 8-fold α–β barrel proteins is almost certainly not coincidental. © 1995 Wiley-Liss, Inc.  相似文献   

16.
In a study undertaken to illustrate the inadequacy of the familiar concept of carbohydrases as hydrolases, crystalline α-amylases from six different sources, as well as crude salivary amylase, were examined and found to catalyze the synthesis of maltose and maltosaccharides from α-d-glucopyranosyl fluoride, a stereoanalog of α-d-glucopyranose. These syntheses apparently involve initial formation of maltosyl fluoride and higher maltosaccharide 1-fluorides, traces of which were found in digests with certain α-amylases. That the reactions are due to the α-amylases themselves and not to some accompanying enzyme(s) appears certain from the purity and diversity of the preparations; their failure (with one exception) to attack α- or β-maltose; the correspondence of the synthesized products with the known specificity of α-amylases for α-1,4-d-glucosidic linkages (and capacity of different α-amylases to hydrolyze saccharides of different sizes). The “saccharifying” α-amylase of B. sublilis var amylosacchariticus was unique in producing maltosaccharides from both α- and β-maltose (i.e., by α-d-glucosyl transfer). However, the entire group of α-amylases had the capacity to promote α-d-glucosyl transfer from α-d-glucosyl fluoride to C4-carbinol sites, demonstrating for the first time that the catalytic range of α-amylase extends beyond hydrolysis and its reversal. Indeed, all transferred the glucosyl group of α-d-glycosyl fluoride preferentially to C4-carbinols rather than water—a finding neither anticipated nor explained by the representation of α-amylases as hydrolases.  相似文献   

17.
De novo design of peptides and proteins has recently surfaced as an approach for investigating protein structure and function. This approach vitally tests our knowledge of protein folding and function, while also laying the groundwork for the fabrication of proteins with properties not precedented in nature. The success relies heavily on the ability to design relatively short peptides that can espouse stable secondary structures. To this end, substitution with α,β‐didehydroamino acids, especially α,β‐didehydrophenylalanine (ΔzPhe), comes in use for spawning well‐defined structural motifs. Introduction of ΔPhe induces β‐bends in small and 310‐helices in longer peptide sequences. The present work aims to investigate the effect of nature and the number of amino acids interspersed between two ΔPhe residues in two model undecapeptides, Ac‐Gly‐Ala‐ΔPhe‐Ile‐Val‐ΔPhe‐Ile‐Val‐ΔPhe‐Ala‐Gly‐NH2 (I) and Boc‐Val‐ΔPhe‐Phe‐Ala‐Phe‐ΔPhe‐Phe‐Leu‐Ala‐ΔPhe‐Gly‐OMe (II). Peptide I was synthesized using solid‐phase chemistry and characterized using circular dichroism spectroscopy. Peptide II was synthesized using solution‐phase chemistry and characterized using circular dichroism and nuclear magnetic resonance spectroscopy. Peptide I was designed to examine the effect of incorporating β‐strand‐favoring residues like valine and isoleucine as spacers between two ΔPhe residues on the final conformation of the resulting peptide. Circular dichroism studies on this peptide have shown the existence of a 310‐helical conformation. Peptide II possesses three amino acids as spacers between ΔPhe residues and has been reported to adopt a mixed 310/α‐helical conformation using circular dichroism and nuclear magnetic resonance spectroscopy studies. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The taurine (Tau) containing tripeptide derivative Z-Tau-Pro-Phe-NHiPr (1) has been synthesized as suitable sulfonamido-pseudopeptide model to investigate formation and conformational properties of folded secondary structures stabilized by intramolecular H bonds directly involving the sulfonamide junction. In the crystal the pseudopeptide 1 adopts a type I β-turn with the Pro and Phe residues located at the (i + 1) and (i + 2) corner positions, respectively. The turn is stabilized by a 4 → 1 H bond engaging one of the SO2 oxygen atoms and the isopropylamide NH. In CDCl3 solution the β-turn folding is accompanied by a γ-turn centered at the Pro and involving a 3 → 1 H bond between the SO2 and the Phe NH. A comparison of the structural and conformational properties found in 1 with those of the already known sulfonamido-pseudopeptides, with particular reference to the models containing the Tau-Pro junction, is also reported. © 1997 John Wiley & Sons, Inc. Biopoly 41: 555–567, 1997.  相似文献   

19.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

20.
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号