首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparisons of joint surface curvature at the base of the thumb have long been made to discern differences among living and fossil primates in functional capabilities of the hand. However, the complex shape of this joint makes it difficult to quantify differences among taxa. The purpose of this study is to determine whether significant differences in curvature exist among selected catarrhine genera and to compare these genera with hominin1 fossils in trapeziometacarpal curvature. Two 3D approaches are used to quantify curvatures of the trapezial and metacarpal joint surfaces: (1) stereophotogrammetry with nonuniform rational B‐spline (NURBS) calculation of joint curvature to compare modern humans with captive chimpanzees and (2) laser scanning with a quadric‐based calculation of curvature to compare modern humans and wild‐caught Pan, Gorilla, Pongo, and Papio. Both approaches show that Homo has significantly lower curvature of the joint surfaces than does Pan. The second approach shows that Gorilla has significantly more curvature than modern humans, while Pongo overlaps with humans and African apes. The surfaces in Papio are more cylindrical and flatter than in Homo. Australopithecus afarensis resembles African apes more than modern humans in curvatures, whereas the Homo habilis trapezial metacarpal surface is flatter than in all genera except Papio. Neandertals fall at one end of the modern human range of variation, with smaller dorsovolar curvature. Modern human topography appears to be derived relative to great apes and Australopithecus and contributes to the distinctive human morphology that facilitates forceful precision and power gripping, fundamental to human manipulative activities. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc. 1 The term “hominin” refers to members of the tribe Hominini, which includes modern humans and fossil species that are related more closely to modern humans than to extant species of chimpanzees, Wood and Lonergan (2008). Hominins are in the family Hominidae with great apes.  相似文献   

2.
Palaeopropithecids, or “sloth lemurs,” are a diverse clade of large‐bodied Malagasy subfossil primates characterized by their inferred suspensory positional behavior. The most recently discovered genus of the palaeopropithecids is Babakotia, and it has been described as more arboreal than Mesopropithecus, but less than Palaeopropithecus. In this article, the within‐bone and between‐bones articular and cross‐sectional diaphyseal proportions of the humerus and femur of Babakotia were compared to extant lemurs, Mesopropithecus and Palaeopropithecus in order to further understand its arboreal adaptations. Additionally, a sample of apes and sloths (Choloepus and Bradypus) are included as functional outgroups composed of suspensory adapted primates and non‐primates. Results show that Babakotia and Mesopropithecus both have high humeral/femoral shaft strength proportions, similar to extant great apes and sloths and indicative of forelimb suspensory behavior, with Babakotia more extreme in this regard. All three subfossil taxa have relatively large femoral heads, also associated with suspension in modern taxa. However, Babakotia and Mesopropithecus (but not Palaeopropithecus) have relatively small femoral head surface area to shaft strength proportions suggesting that hind‐limb positioning in these taxa during climbing and other behaviors was different than in extant great apes, involving less mobility. Knee and humeral articular dimensions relative to shaft strengths are small in Babakotia and Mesopropithecus, similar to those found in modern sloths and divergent from those in extant great apes and lemurs, suggesting more sloth‐like use of these joints during locomotion. Mesopropithecus and Babakotia are more similar to Choloepus in humerofemoral head and length proportions while Palaeopropithecus is more similar to Bradypus. These results provide further evidence of the suspensory adaptations of Babakotia and further highlight similarities to both extant suspensory primates and non‐primate slow arboreal climbers and hangers. J. Morphol. 277:1199–1218, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Whether human fetal skeletal remains exhibit sexual dimorphism has been the subject of considerable debate. Most attention in this debate has focused on the greater sciatic notch of the ilium, since it is a gross morphological characteristic with known sex differences in the adult and is easily seen in fetal skeletal remains. Unfortunately, previous traditional morphometric analyses of the fetal sciatic notch have led to ambiguous results. The purpose of this study is to determine whether differences between the sexes can be discerned when modern morphometric techniques are applied to the fetal sciatic notch. Photographs of the ventral side of 133 fetal ilia of known age and sex from the Trotter Collection of Washington University were digitized, and the trace coordinates used for all subsequent analyses. The results of the analysis demonstrate that there is significant sexual dimorphism in the anterior to posterior location of the maximum depth of the sciatic notch, but that the depth of the notch itself is not dimorphic. While there is significant sexual dimorphism in the shape of the sciatic notch, the amount of overlap between males and females is too great for the sciatic notch to be used as a reliable indicator of sex. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Considerable variation exists in mandibular ramus form among primates, particularly great apes and humans. Recent analyses of adult ramal morphology have suggested that features on the ramus, especially the coronoid process and sigmoid notch, can be treated as phylogenetic characters that can be used to reconstruct relationships among great ape and fossil hominin taxa. Others have contended that ramal morphology is more influenced by function than phylogeny. In addition, it remains unclear how ontogeny of the ramus contributes to adult variation in great apes and humans. Specifically, it is unclear whether differences among adults appear early and are maintained throughout ontogeny, or if these differences appear, or are enhanced, during later development. To address these questions, the present study examined a broad ontogenetic sample of great apes and humans using two‐dimensional geometric morphometric analysis. Variation within and among species was summarized using principal component and thin plate spline analyses, and Procrustes distances and discriminant function analyses were used to statistically compare species and age classes. Results suggest that morphological differences among species in ramal morphology appear early in ontogeny and persist into adulthood. Morphological differences among adults are particularly pronounced in the height and angulation of the coronoid process, the depth and anteroposterior length of the sigmoid notch, and the inclination of the ramus. In all taxa, the ascending ramus of the youngest specimens is more posteriorly inclined in relation to the occlusal plane, shifting to become more upright in adults. These results suggest that, although there are likely functional influences over the form of the coronoid process and ramus, the morphology of this region can be profitably used to differentiate among great apes, modern humans, and fossil hominid taxa. J. Morphol. 275:661–677, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three‐dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non‐human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three‐dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Am J Phys Anthropol 151:630–642, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Clarifying morphological variation among African and Eurasian hominoids during the Miocene is of particular importance for inferring the evolutionary history of humans and great apes. Among Miocene hominoids, Nakalipithecus and Ouranopithecus play an important role because of their similar dates on different continents. Here, we quantify the lower fourth deciduous premolar (dp4) inner morphology of extant and extinct hominoids using a method of morphometric mapping and examine the phylogenetic relationships between these two fossil taxa. Our data indicate that early Late Miocene apes represent a primitive state in general, whereas modern great apes and humans represent derived states. While Nakalipithecus and Ouranopithecus show similarity in dp4 morphology to a certain degree, the dp4 of Nakalipithecus retains primitive features and that of Ouranopithecus exhibits derived features. Phenotypic continuity among African ape fossils from Miocene to Plio-Pleistocene would support the African origin of African apes and humans (AAH). The results also suggest that Nakalipithecus could have belonged to a lineage from which the lineage of Ouranopithecus and the common ancestor of AAH subsequently derived.  相似文献   

7.
The first known fossil ape from the early-middle Miocene of Fejej, Ethiopia, is described here. The specimen, FJ-18SB-68, is a partial ulna from a locality dated by 40Ar/39Ar and paleomagnetic methods to a minimum age of 16.18 MYA. Compared to a variety of extant and fossil ulnae, FJ-18SB-68 is most similar to Turkanapithecus, Proconsul, and Pliopithecus, and appears to have been an arboreal quadruped with substantial forearm rotational mobility. Among the extant ulnae, canonical variates analysis successfully discriminates platyrrhines from catarrhines and within the latter, cercopithecoids from hominoids. Basal catarrhines (e.g., Aegyptopithecus) are platyrrhine-like in their morphology. Two basic trends appear to evolve from this generalized template: one with less mobile and more habitually pronated forearms, as seen in living and fossil cercopithecoids (including Victoriapithecus and Paracolobus), and another with greater forearm rotational mobility in fossil and modern hominoids. Primitive Miocene apes, including Proconsul, Turkanapithecus, and FJ-18SB-68, share with extant hominoids a more laterally positioned and laterally facing radial notch and an incipient trochlear keel. This morphology, along with a large insertion area for m. brachialis, suggests a departure from the more habitually pronated hand posture of monkeys and may indicate greater climbing abilities in these arboreally quadrupedal apes. Later Miocene apes, such as Oreopithecus and Dryopithecus share additional morphological features with hominoids, indicating considerable suspensory and climbing capabilities. Am J Phys Anthropol 105:257–277, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The structure and functions of the modern human hand are critical components of what distinguishes Homo sapiens from the great apes (Gorilla, Pan, and Pongo). In this study, attention is focused on the trapezium and trapezoid, the two most lateral bones of the distal carpal row, in the four extant hominid genera, representing the first time they have been quantified and analyzed together as a morphological-functional complex. Our objective is to quantify the relative articular and nonarticular surface areas of these two bones and to test whether modern humans exhibit significant shape differences from the great apes, as predicted by previous qualitative analyses and the functional demands of differing manipulative and locomotor strategies. Modern humans were predicted to show larger relative first metacarpal and scaphoid surfaces on the trapezium because of the regular recruitment of the thumb during manipulative behaviors; alternatively, great apes were predicted to show larger relative second metacarpal and scaphoid surfaces on the trapezoid because of the functional demands on the hands during locomotor behaviors. Modern humans were also expected to exhibit larger relative mutual joint surfaces between the trapezoid and adjacent carpals than do the great apes because of assumed transverse loads generated by the functional demands of the modern human power grip. Using 3D bone models acquired through laser digitizing, the relative articular and nonarticular areas on each bone are quantified and compared. Multivariate analyses of these data clearly distinguish modern humans from the great apes. In total, the observed differences between modern humans and the great apes support morphological predictions based on the fact that this region of the human wrist is no longer involved in weight-bearing during locomotor behavior and is instead recruited solely for manipulative behaviors. The results provide the beginnings of a 3D comparative standard against which further extant and fossil primate wrist bones can be compared within the contexts of manipulative and locomotor behaviors.  相似文献   

9.
We describe a scaphoid and two capitates from the late Miocene site of Rudabánya, Hungary using qualitative and quantitative comparisons to a large sample of hominoid, cercopithecoid, and platyrrhine primates. The scaphoid (RUD 202) is not fused to the os centrale and in this way is like most primates other than African apes and humans (hominines). Qualitatively, its morphology is most similar to Pongo, and univariate analyses generally confirm an ape-like morphology with an increased range of mobility. One capitate (RUD 167) is compatible in size to the scaphoid, and its morphology suggests a combination of monkey-like generalized arboreality and ape-like enhanced mobility. RUD 203 is a smaller, fragmentary capitate, about half the size of RUD 167, and preserves only the distal portion of the body with the third metacarpal articular surface. Its morphology is virtually identical to that of RUD 167, and an exact randomization test revealed that it is statistically likely to find two carpal bones of such disparate sizes within one taxon. However, due to morphological similarities with other Miocene hominoids as well as implications for size variation within one taxon and sex, we consider the taxonomic affiliation of RUD 203 to be unresolved. We attribute the scaphoid and RUD 167 capitate to the hominine Rudapithecus hungaricus (formerly Dryopithecus brancoi; see Begun et al., 2008) based on overall morphological similarity to extant apes, particularly Pongo, and not to the pliopithecoid Anapithecus hernyaki, the only other primate known from Rudabánya. The similarities in carpal morphology to suspensory taxa are consistent with previous interpretations of Rudapithecus positional behavior. The scaphoid and the RUD 167 capitate are consistent in size with a partial skeleton including associated postcranial and craniodental specimens from the same level at the locality and may be from the same individual. These are the first carpal bones described from Rudabánya and from this taxon, and they add to our understanding of the evolution of arboreal locomotion in late Miocene apes.  相似文献   

10.
Canines of fossil hominoids and primitive catarrhines from several early, middle, and late Miocene sites were analyzed according to the shape indices described in Kelley (1995) and compared to those of males and females of extant great apes. In bivariate plots of the fossil canines utilizing the indices, 90% of the upper canines and 85% of the lower canines fell within or just outside the exclusively male or exclusively female territories delimited by the extant great apes. The remainder fell in the male-female overlap zones. Sex assignments based on these distributions were nearly 100% concordant with classifications according to canine height, suggesting a high degree of accuracy. There were various taxon-specific shifts in bivariate space among fossil genera, reflecting subtle differences in canine shape between taxa within the overall pattern of similarity to extant great apes as a whole. In many cases these shifts are matched by particular extant-ape species and subspecies, while other fossil taxa have no exact analogue for canine shape among the extant great apes. However, the pattern of spatial segregation of canines identified as either male or female at each of the sites largely mirrors that of males and females within the extant-ape sample, indicating that Miocene catarrhines shared with extant great apes a common pattern of shape differences between male and female canines, regardless of taxonspecific morphologies. These observations demonstrate that the canines of fossil catarrhines can be sexed with a high degree of confidence based solely on intrinsic features of shape. This will permit more reliable characterizations of morphological sexual dimorphism among fossil species. It is also argued that canine shape is a more reliable indicator of sex in fossil taxa than are canine/molar size ratios. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The degree of size and shape variation in the A. afarensis fossil sample has been interpreted in a variety of ways. Size variation has been described as exceeding that of extant hominoids, similar to that of strongly sexually dimorphic hominoids, and best matched to modern humans. The degree of shape variation has been characterized both as great and negligible. Recent fieldwork has increased the proximal femoral sample, providing new data with which to examine variation. The proximal femur of A. afarensis is analyzed in a comparative framework in order to gauge the magnitude of size and shape variation in this element.Seven of the best-preserved A. afarensis proximal femora contribute to the analysis (A.L. 128-1, A.L. 152-2, A.L. 211-1, A.L. 288-1ap, A.L. 333-3, A.L. 333-123, A.L. 827-1). Comparative samples from Pan, Pongo, Gorilla, and Homo provide context for interpreting variation among the fossils. The coefficient of variation (CV) of linear measurements is used to estimate size variation. Bootstrap resampling of CVs from extant hominoids provides distributions for comparison to A. afarensis CVs. Ratios of linear measurements provide scale-free shape variables that are used in pairwise comparisons. The Euclidean distance between pairs of A. afarensis are compared to the Euclidean distances between extant hominoid pairs.As found in some earlier analyses, size variation in A. afarensis is accommodated best in gorillas and orangutans. The magnitude of difference in shape between A. afarensis pairs is exceeded by most taxa, indicating that shape variation is not extreme. These general findings are contradicted by a few instances of excessive size and shape variation. These are uncharacteristic results and could point to temporal bias, although other alternatives are explored. The signal from the proximal femur is that size variation in A. afarensis is like that of the strongly sexually dimorphic apes, and shape variation is well within the range of most hominoids irrespective of their degree of size dimorphism.  相似文献   

12.
13.
There is general agreement that the hominoid primates form a monophyletic group, that the extant great apes and humans form a second clade within that group with the gibbons as the sister group, and that the African apes and humans form a third clade. Although it has recently been proposed that humans and orang utans are sister taxa and also that the great apes form a clade to the exclusion of humans, our analysis, particularly of the molecular evidence, supports the existence of an African ape and human clade. The major problem in hominoid phylogeny at present is the relationships of the species within this clade: morphological data generally support the existence of an African ape clade which is the sister group to humans; some molecular data also support this conclusion, but most molecular evidence indicates the existence of a chimpanzee/human clade. We have cladistically re-analysed the DNA and protein sequence data for which apomorphic character states can be assessed. It is clear that there is a high degree of homoplasy whichever branching pattern is produced, with some characters supporting the existence of a chimpanzee/human clade and others supporting an African ape clade. When the cladistic analyses of morphological and molecular data are combined we believe that the most parsimonious interpretation of the data is that the African apes form a clade which is the sister taxon of the human (i.e., Australopithecus, Homo and Paranthropus) clade.This paper is not intended as a survey of all hominoid fossils but as a study of branching points in hominoid evolution and fossils are included which are relevant to this branching pattern. The analysis of fossil taxa in this study leads us to conclude that Proconsul is the sister taxon to the later Hominoidea. A number of middle Miocene forms such as Dryopithecus, Kenyapithecus, Heliopithecus and Afropithecus are shown to share derived characters with great apes and humans and provide evidence for the divergence of that clade from the gibbon lineage prior to 18 Ma. The position that Sivapithecus represents the sister group of the orang utan clade is supported here and shows that the orang utan lineage had diverged from the African ape and human lineage prior to 11·5 Ma. There is unfortunately no definitive fossil cvidence on branching sequences within the African ape and human clade, although a new specimen from Samburu, Kenya may be related to the gorilla.  相似文献   

14.
Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.  相似文献   

15.
16.
Evolutionary developmental biology is quickly transforming our understanding of how lineages evolve through the modification of ontogenetic processes. Yet, while great strides have been made in the study of neontological forms, it is much more difficult to apply the principles of evo-devo to the miserly fossil record. Because fossils are static entities, we as researchers can only infer evolution and development by drawing connections between them. The choices of how we join specimens together??juveniles to adults to study ontogeny, taxon to taxon to study evolution??can dramatically affect our results. Here, I examine paedomorphism in the fossil hominin species Australopithecus africanus. Using extant African apes as proxies for ancestral hominin morphology, I demonstrate that Sts 71 is most similar to a sub-adult African ape, suggesting that A. africanus is paedomorphic relative to the presumed ancestral form. I then plot ontogenetic size and shape in extant great apes, humans, and A. africanus in order to assess patterns of ontogenetic allometry. Results indicate that ontogenetic allometry in A. africanus, subsequent to M1 occlusion is similar to that in modern humans and bonobos; gorillas, chimpanzees, and orangutans share a different pattern of size-shape relationship. Combined with results from the analysis of paedomorphism plus knowledge about the developmental chronologies of this group, these findings suggest that paedomorphism in A. africanus arises relatively early in ontogeny.  相似文献   

17.
《Comptes Rendus Palevol》2002,1(4):191-203
Three fragments of femora of Orrorin tugenensis, a 6 Ma hominid from the Lukeino Formation, Kenya, possesses a suite of derived characters that reveal that the species was habitually bipedal. Detailed anatomical comparisons with modern humans, Australopithecines and Miocene and extant African apes, reveal that Orrorin shares several apomorphic features with Australopithecines and Homo, but none with Pan or Gorilla. Within the Hominidae, the femur of Orrorin is closer morphologically to that of modern humans than it is to those of australopithecines.  相似文献   

18.
The choice of a model taxon is crucial when investigating fossil hominids that clearly do not resemble any extant species (such as Australopithecus) or show significant differences from modern human proportions (such as Homo habilis OH 62). An “interhominoid” combination is not adequate either, as scaling with body weight is strongly divergent in African apes and humans for most skeletal predictors investigated here. Therefore, in relation to a study of seven long bone dimensions, a new taxon-“independent” approach is suggested. For a given predictor, its taxonomic “independence” is restricted to the size range over which the body weight-predictor relationship for African apes and humans converges. Different predictors produce converging body weight estimates (BWEs) for different size ranges: taxon-“independent” estimates can be calculated for small- and medium-sized hominids (e. g., for weights below 50 kg) using femoral and tibial dimensions, whereas upper limb bones provide converging results for large hominids (above 50 kg). If the remains of Australopithecus afarensis really belong to one species, the relationship of male (above 60 kg) to female body weight (approximately 30 kg) does not fall within the observed range of modern hominoids. Considering Sts 14 (22 kg) to represent a small-sized Australopithecus africanus, the level of encephalization lies well above that of extant apes. If OH 62 (approximately 25 kg), with limb proportions less human-like than those of australopithecines, indeed represents Homo habilis (which has been questioned previously), an increase in relative brain size would have occurred well before full bipedality, an assumption running counter to current assumptions concerning early human evolution. © 1993 Wiley-Liss, Inc.  相似文献   

19.
In this paper, we explore how the results of a primate-wide higher-level phylogenetic analysis of muscle characters can improve our understanding of the evolution and homologies of the forearm and hand muscles of modern humans. Contrary to what is often suggested in the literature, none of the forearm and hand muscle structures usually present in modern humans are autapomorphic. All are found in one or more extant non-human primate taxa. What is unique is the particular combination of muscles. However, more muscles go to the thumb in modern humans than in almost all other primates, reinforcing the hypothesis that focal thumb movements probably played an important role in human evolution. What makes the modern human thumb myology special within the primate clade is not so much its intrinsic musculature but two extrinsic muscles, extensor pollicis brevis and flexor pollicis longus, that are otherwise only found in hylobatids. It is likely that these two forearm muscles play different functional roles in hylobatids and modern humans. In the former, the thumb is separated from elongated digits by a deep cleft and there is no pulp-to-pulp opposition, whereas modern humans exhibit powerful thumb flexion and greater manipulative abilities, such as those involved in the manufacture and use of tools. The functional and evolutionary significance of a third peculiar structure, the intrinsic hand structure that is often called the ‘interosseous volaris primus of Henle’ (and which we suggest is referred to as the musculus adductor pollicis accessorius) is still obscure. The presence of distinct contrahentes digitorum and intermetacarpales in adult chimpanzees is likely the result of prolonged or delayed development of the hand musculature of these apes. In relation to these structures, extant chimpanzees are more neotenic than modern humans.  相似文献   

20.
The large hominoid sample from the late Miocene site of Lufeng, China, has been variously claimed to contain either one or two species, but very few metric data in support of either position have been published. We calculate coefficients of variation for the dental remains both for the two presumed species and for the pooled sample as a whole using the summary statistics published by Wu & Oxnard (Wu & Oxnard: American Journal of Primatology 5:303–344, 1983a, Nature 306:258–260, 1983b). These are compared to the same measures of single-sex and combined-sex samples of extant hominoids. We also present metric characterizations of male and female canines of extant great apes, with which we evaluate the gender composition of the Lufeng canine sample. In a two-species alternative, the two presumed species have measures of variability and canine representation that are more compatible with single-sex samples representing males and females, respectively. The pooled dental sample has measures of variability within the ranges of single species of extant great apes. We conclude there is a single large hominoid species represented at Lufeng that is highly sexually dimorphic. The phylogenetic relationships of this species are briefly considered. It is generally primitive in craniodental morhpology and is unlikely to be a member of the Sivapithecus-Pongo clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号