首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The myristoyl group and first eight residues of Frq1 are solvent-exposed, and Ca2+ binds the second, third, and fourth EF-hands, which associate to create a groove with two pockets. The Pik1 peptide forms two helices (125-135 and 156-169) connected by a 20-residue loop. Side chains in the Pik1 N-terminal helix (Val-127, Ala-128, Val-131, Leu-132, and Leu-135) interact with solvent-exposed residues in the Frq1 C-terminal pocket (Leu-101, Trp-103, Val-125, Leu-138, Ile-152, and Leu-155); side chains in the Pik1 C-terminal helix (Ala-157, Ala-159, Leu-160, Val-161, Met-165, and Met-167) contact solvent-exposed residues in the Frq1 N-terminal pocket (Trp-30, Phe-34, Phe-48, Ile-51, Tyr-52, Phe-55, Phe-85, and Leu-89). This defined complex confirms that residues in Pik1 pinpointed as necessary for Frq1 binding by site-directed mutagenesis are indeed sufficient for binding. Removal of the Pik1 N-terminal region (residues 8-760) from its catalytic domain (residues 792-1066) abolishes lipid kinase activity, inconsistent with Frq1 binding simply relieving an autoinhibitory constraint. Deletion of the lipid kinase unique motif (residues 35-110) also eliminates Pik1 activity. In the complex, binding of Ca2+-bound Frq1 forces the Pik1 chain into a U-turn. Frq1 may activate Pik1 by facilitating membrane targeting via the exposed N-myristoyl group and by imposing a structural transition that promotes association of the lipid kinase unique motif with the kinase domain.  相似文献   

2.
Steered molecular dynamics (SMD) simulations were employed to investigate the extraction step of the lipid head group cleavage reaction by human synovial phospholipase A2 (PLA2) by pulling a lipid molecule from a monolayer of dilauroyl-phosphatidyl-ethanolamin lipids into the active site of PLA2 and into the aqueous phase. The results of the simulations were compared to draw inferences about the forces that stabilize the lipids in the membrane and to understand the mechanism of lipid extraction by PLA2.  相似文献   

3.
Recoverin, a member of the neuronal calcium sensor branch of the EF-hand superfamily, serves as a calcium sensor that regulates rhodopsin kinase (RK) activity in retinal rod cells. We report here the NMR structure of Ca(2+)-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25). The overall main-chain structure of recoverin in the complex is similar to structures of Ca(2+)-bound recoverin in the absence of target (<1.8A root-mean-square deviation). The first eight residues of recoverin at the N terminus are solvent-exposed, enabling the N-terminal myristoyl group to interact with target membranes, and Ca(2+) is bound at the second and third EF-hands of the protein. RK25 in the complex forms an amphipathic helix (residues 4-16). The hydrophobic face of the RK25 helix (Val-9, Val-10, Ala-11, Ala-14, and Phe-15) interacts with an exposed hydrophobic groove on the surface of recoverin lined by side-chain atoms of Trp-31, Phe-35, Phe-49, Ile-52, Tyr-53, Phe-56, Phe-57, Tyr-86, and Leu-90. Residues of recoverin that contact RK25 are highly conserved, suggesting a similar target binding site structure in all neuronal calcium sensor proteins. Site-specific mutagenesis and deletion analysis confirm that the hydrophobic residues at the interface are necessary and sufficient for binding. The recoverin-RK25 complex exhibits Ca(2+)-induced binding to rhodopsin immobilized on concanavalin-A resin. We propose that Ca(2+)-bound recoverin is bound between rhodopsin and RK in a ternary complex on rod outer segment disk membranes, thereby blocking RK interaction with rhodopsin at high Ca(2+).  相似文献   

4.
Naylor HM  Newcomer ME 《Biochemistry》1999,38(9):2647-2653
Whether ultimately utilized as retinoic acid, retinal, or retinol, vitamin A is transported to the target cells as all-trans-retinol bound to retinol-binding protein (RBP). Circulating in the plasma, RBP itself is bound to transthyretin (TTR, previously referred to as thyroxine-binding prealbumin). In vitro one tetramer of TTR can bind two molecules of retinol-binding protein. However, the concentration of RBP in the plasma is limiting, and the complex isolated from serum is composed of TTR and RBP in a 1 to 1 stoichiometry. We report here the crystallographic structure at 3.2 A of the protein-protein complex of human RBP and TTR. RBP binds at a 2-fold axis of symmetry in the TTR tetramer, and consequently the recognition site itself has 2-fold symmetry: Four TTR amino acids (Arg-21, Val-20, Leu-82, and Ile-84) are contributed by two monomers. Amino acids Trp-67, Phe-96, and Leu-63 and -97 from RBP are flanked by the symmetry-related side chains from TTR. In addition, the structure reveals an interaction of the carboxy terminus of RBP at the protein-protein recognition interface. This interaction, which involves Leu-182 and Leu-183 of RBP, is consistent with the observation that naturally occurring truncated forms of the protein are more readily cleared from plasma than full-length RBP. Complex formation prevents extensive loss of RBP through glomerular filtration, and the loss of Leu-182 and Leu-183 would result in a decreased affinity of RBP for TTR.  相似文献   

5.
Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.  相似文献   

6.
A novel method is described to demonstrate inaccessibility to the bulk aqueous phase of the microinterface between pig pancreatic phospholipase A2 and lipid bilayers to which this protein is bound. The method is based on the fact that the fluorescence emission quantum yields of the tryptophan residue of the protein and of a 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) chromophore attached to a lipid are lower in water as compared to that in deuterated water. The fluorescence emission quantum yield of these chromophores is measured in water and in deuterated water under conditions where the protein is either bound or not bound to the surface of a lipid bilayer containing the dansyl chromophore. Under conditions where the protein is tightly bound to the surface of the bilayer, desolvation of both fluorophores abolishes the observed effect of deuterated water. The tryptophan residue in the bound phospholipase A2 also becomes inaccessible to fluorescence quenching by acrylamide or succinimide. Desolvation of the microinterface is observed only under conditions that are significant for the catalytic action of phospholipase A2 in the scooting mode and not in the hopping mode. Also, under similar conditions, binding of pro-phospholipase A2 to anionic vesicles does not cause dehydration of the microinterface. The mechanistic significance of these observations for lipid-protein interactions, in general, and for interfacial catalysis and interfacial activation, in particular, is discussed.  相似文献   

7.
8.
Lipid membrane interfaces host reactions essential for the functioning of cells. The hydrogen-bonding environment at the membrane interface is particularly important for binding of proteins, drug molecules, and ions. We present here the implementation and applications of a depth-first search algorithm that analyzes dynamic lipid interaction networks. Lipid hydrogen-bond networks sampled transiently during simulations of lipid bilayers are clustered according to main types of topologies that characterize three-dimensional arrangements of lipids connected to each other via short water bridges. We characterize the dynamics of hydrogen-bonded lipid clusters in simulations of model POPE and POPE:POPG membranes that are often used for bacterial membrane proteins, in a model of the Escherichia coli membrane with six different lipid types, and in POPS membranes. We find that all lipids sample dynamic hydrogen-bonded networks with linear, star, or circular arrangements of the lipid headgroups, and larger networks with combinations of these three types of topologies. Overall, linear lipid-water bridges tend to be short. Water-mediated lipid clusters in all membranes with PE lipids tend to be somewhat small, with about four lipids in all membranes studied here. POPS membranes allow circular arrangements of three POPS lipids to be sampled frequently, and complex arrangements of linear, star, and circular paths may also be sampled. These findings suggest a molecular picture of the membrane interface whereby lipid molecules transiently connect in clusters with somewhat small spatial extension.  相似文献   

9.
We have monitored the composition of supported phospholipid bilayers during phospholipase A2 hydrolysis using specular neutron reflection and ellipsometry. Porcine pancreatic PLA2 shows a long lag phase of several hours during which the enzyme binds to the bilayer surface, but only 5 ± 3% of the lipids react before the onset of rapid hydrolysis. The amount of PLA2, which resides in a 21 ± 1 Å thick layer at the water-bilayer interface, as well as its depth of penetration into the membrane, increase during the lag phase, the length of which is also proportional to the enzyme concentration. Hydrolysis of a single-chain deuterium labelled d31-POPC reveals for the first time that there is a significant asymmetry in the distribution of the reaction products between the membrane and the aqueous environment. The lyso-lipid leaves the membrane while the number of PLA2 molecules bound to the interface increases with increasing fatty acid content. These results constitute the first direct measurement of the membrane structure and composition, including the location and amount of the enzyme during hydrolysis. These are discussed in terms of a model of fatty-acid mediated activation of PLA2.  相似文献   

10.
In order to further elucidate the influence of membrane lipids on transport via the lipid domain of the erythrocyte membrane, simple non-electrolyte diffusion was investigated by tracer flux measurements in whole cells after cleavage of up to 65% of phosphatidylcholine or sphingomyelin by phospholipase A2 from Naja naja, or by sphingomyelinase.A new type of labelled model non-electrolyte was used in this study, readily available by reacting a non-labelled thiol with a labelled alkylating SH-reagent.In spite of the marked enzymatic alterations of the membrane, which lead to the occurrence of large quantities of lysophosphatidylcholine and long chain fatty acids, or of ceramide, the permeability of the lipid domain remained unaffected.This finding is very surprising, since the physical properties of the lipid phase (microviscosity, structure of the membrane interface) are likely to be perturbed in the enzyme-treated membranes.Sphingomyelinase-treated cells undergo stomatocytic shape changes followed by deep invaginations of the membrane and finally endocytosis, while phospholipase A2-treated cells essentially maintain their normal shape.  相似文献   

11.
The membranes of healthy lymphocytes normally resist hydrolysis by secretory phospholipase A2. However, they become susceptible during the process of apoptosis. Previous experiments have demonstrated the importance of certain physical changes to the membrane during cell death such as a reduction in membrane lipid order and exposure of phosphatidylserine on the membrane surface. Nevertheless, those investigations also showed that at least one additional factor was required for rapid hydrolysis by the human group IIa phospholipase isozyme. This study was designed to test the possibility that oxidation of membrane lipids is the additional factor. Flow cytometry and confocal microscopy with a fluorescent probe of oxidative potential suggested that oxidation of the plasma membrane occurs during apoptosis stimulated by thapsigargin. When oxidative potential was high, the activity of human group IIa secretory phospholipase A2 was enhanced 30- to 100-fold compared to that observed with conditions sufficient for maximal hydrolysis by other secretory phospholipase A2 isoforms. Direct oxidation of cell membranes with either of two oxidizing agents also stimulated hydrolysis by secretory phospholipase A2. Both oxidizers caused externalization of phosphatidylserine, but a change in lipid order did not always occur. These results demonstrated that membrane oxidation strongly stimulates human group IIa secretory phospholipase A2 activity toward apoptotic cells. Interestingly, the change in membrane order, previously thought to be imperative for high rates of hydrolysis, was not required when membrane lipids were oxidized. Whether phosphatidylserine exposure is still necessary with oxidation remains unresolved since the two events could not be deconvoluted.  相似文献   

12.
Suramin is a polysulphonated napthylurea used as an antiprotozoal/anthelminitic drug, which also inhibits a broad range of enzymes. Suramin binding to recombinant human secreted group IIA phospholipase A2 (hsPLA2GIIA) was investigated by molecular dynamics simulations (MD) and isothermal titration calorimetry (ITC). MD indicated two possible bound suramin conformations mediated by hydrophobic and electrostatic interactions with amino-acids in three regions of the protein, namely the active-site and residues located in the N- and C-termini, respectively. All three binding sites are located on the phospholipid membrane recognition surface, suggesting that suramin may inhibit the enzyme, and indeed a 90% reduction in hydrolytic activity was observed in the presence of 100 nM suramin. These results correlated with ITC data, which demonstrated 2.7 suramin binding sites on the hsPLA2GIIA, and indicates that suramin represents a novel class of phospholipase A2 inhibitor.  相似文献   

13.
Phospholipids are key components of biological membranes and their lipolysis with phospholipase A2 (PLA2) enzymes occurs in different cellular pH environments. Since no studies are available on the effect of pH on PLA2-modified phospholipid membranes, we performed 50-ns atomistic molecular dynamics simulations at three different pH conditions (pH 9.0, 7.5, and 5.5) using a fully PLA2-hydrolyzed phosphatidylcholine (PC) bilayer which consists solely of lysophosphatidylcholine and free fatty acid molecules. We found that a decrease in pH results in lateral squeezing of the membrane, i.e. in decreased surface area per headgroup. Thus, at the decreased pH, the lipid hydrocarbon chains had larger SCD order parameter values, and also enhanced membrane thickness, as seen in the electron density profiles across the membrane. From the lateral pressure profiles, we found that the values of spontaneous curvature of the two opposing monolayers became negative when the pH was decreased. At low pH, protonation of the free fatty acid headgroups reduces their mutual repulsion and accounts for the pH dependence of all the above-mentioned properties. The altered structural characteristics may significantly affect the overall surface properties of biomembranes in cellular vesicles, lipid droplets, and plasma lipoproteins, play an important role in membrane fission and fusion, and modify interactions between membrane lipids and the proteins embedded within them.  相似文献   

14.
Secretory phospholipase A2 (sPLA2) is a class of interfacially active enzymes that selectively hydrolyze lipid molecules organized at interfaces like membranes. We present a simple theoretical model that relates the sPLA2 action to the protrusions of the lipid molecules. The model explains (1) the observed enhancement of enzymatic activity by lipids with flexible, neutral, water-soluble polymers linked to their head groups and (2) the lag-burst kinetics of sPLA2. It yields qualitative predictions of the effect of the initial composition of the membrane, the molecular weight of the polymer, and the composition of the hydrolysis products.  相似文献   

15.
A number of membrane-active enzymes act in a complex environment formed by the interface between a lipid bilayer and bulk water. Although x-ray diffraction studies yield structures of isolated enzyme molecules, a detailed characterization of their interactions with the interface requires a measure of how deeply such a membrane-associated protein penetrates into a lipid bilayer. Here, we apply coarse-grained (CG) molecular dynamics (MD) simulations to probe the interaction of porcine pancreatic phospholipase A2 (PLA2) with a lipid bilayer containing palmitoyl-oleoyl-phosphatidyl choline and palmitoyl-oleoyl-phosphatidyl glycerol molecules. We also used a configuration from a CG-MD trajectory to initiate two atomistic (AT) MD simulations. The results of the CG and AT simulations are evaluated by comparison with available experimental data. The membrane-binding surface of PLA2 consists of a patch of hydrophobic residues surrounded by polar and basic residues. We show this proposed footprint interacts preferentially with the anionic headgroups of the palmitoyl-oleoyl-phosphatidyl glycerol molecules. Thus, both electrostatic and hydrophobic interactions determine the location of PLA2 relative to the bilayer. From a general perspective, this study demonstrates that CG-MD simulations may be used to reveal the orientation and location of a membrane-surface-bound protein relative to a lipid bilayer, which may subsequently be refined by AT-MD simulations to probe more detailed interactions.  相似文献   

16.
Aquaporin-4 (AQP4) is the predominant water channel in the central nervous system, where it has been reported to be involved in many pathophysiological roles including water transport. In this paper, the AQP4 tetramer was modeled from its PDB structure file, embedded in a palmitoyl-oleoyl-phosphatidyl-choline (POPC) lipid bilayer, solvated in water, then minimized and equilibrated by means of molecular dynamics simulations. Analysis of the equilibrated structure showed that the central pore along the fourfold axis of the tetramers is formed with hydrophobic amino acid residues. In particular, Phe-195, Leu-191 and Leu-75, form the narrowest part of the pore. Therefore water molecules are not expected to transport through the central pore, which was confirmed by MD simulations. Each monomer of the AQP4 tetramers forms a channel whose walls consist mostly of hydrophilic residues. There are eight water molecules in single file observed in each of the four channels, transporting through the selectivity filter containing Arg-216, His-201, Phe-77, Ala-210, and the two conserved Asn-Pro-Ala (NPA) motifs containing Asn-213 and Asn-97. By using Brownian dynamics fluctuation–dissipation-theorem (BD-FDT), the overall free-energy profile was obtained for water transporting through AQP4 for the first time, which gives a complete map of the entire channel of water permeation.  相似文献   

17.
PMR1 is the yeast secretory pathway pump responsible for high affinity transport of Mn2+ and Ca2+ into the Golgi, where these ions are sequestered and effectively removed from the cytoplasm. Phenotypic growth assays allow for convenient screening of side chains important for Ca2+ and Mn2+ transport. Earlier we demonstrated that mutant Q783A at the cytoplasmic interface of M6 could transport Ca2+, but not Mn2+. Scanning mutagenesis of side chains proximal to residue Gln-783 in membrane helices M2, M4, M5, and M6 revealed additional residues near the cytoplasmic interface, notably Leu-341 (M5), Phe-738 (M5), and Leu-785 (M6) that are sensitive to substitution. Importantly, we obtained evidence for a packing interaction between Val-335 in M4 and Gln-783 in M6 that is critical for Mn2+ transport. Thus, mutant V335G mimics the Mn2+ transport defect of Q783A and mutant V335I can effectively suppress the Mn2+-defective phenotype of Q783A. These changes in ion selectivity were confirmed by cation-dependent ATP hydrolysis using purified enzyme. Other substitutions at these sites are tolerated individually, but not in combination. Exchange of side chains at 335 and 783 also results in ion selectivity defects, suggesting that the packing interaction may be conformation-sensitive. Homology models of M4, M5, and M6 of PMR1 have been generated, based on the structures of the sarcoplasmic reticulum Ca2+-ATPase. The models are supported by data from mutagenesis and reveal that Gln-783 and Val-335 show conformation-sensitive packing at the cytoplasmic interface. We suggest that this region may constitute a gate for access of Mn2+ ions.  相似文献   

18.
Lipids and lipolytic enzyme activities of rat heart mitochondria   总被引:1,自引:0,他引:1  
The lipid composition and lipolytic enzyme activities in rat cardiac mitochondria were examined. Subsarcolemmal mitochondria were prepared by treatment of heart muscle with a Polytron tissue processor, while interfibrillar mitochondria were released by exposure of the remaining low-speed pellet to the protease, nagarse. These procedures are known to yield two functionally different populations of mitochondria. However, their phospholipid contents and compositions were identical, as were the positional distributions of the constituent fatty acids. Of the ethanolamine phospholipids, 20% were plasmalogens, and about 2% of the choline phospholipids consisted of this alkenylacyl species. Both subsarcolemmal and interfibrillar mitochondria contained a Ca2+-activated phospholipase A2, as evidenced by the Ca2+-dependent release of unsaturated fatty acids and lysophosphatidylethanolamine from endogenous lipids. Ruthenium red prevented the activation of this enzyme by Ca2+, indicating that the activity is located in the matrix space or associated with the inner surface of the inner membrane. Both mitochondrial fractions produced free fatty acids and lysophosphatidylethanolamine in the absence of free Ca2+ apparently due to an outer membrane phospholipase A1. The activity of this enzyme decreased with time, particularly in interfibrillar mitochondria, providing that Ca2+ was absent. Nagarse treatment of subsarcolemmal mitochondria resulted in a preparation with the same phospholipase A1 properties as interfibrillar mitochondria. The possibility that differences in phospholipase A1 properties account for some of the functional variations between the two mitochondrial types is discussed.  相似文献   

19.
Positively charged polybasic domains are essential for recruiting multiple signaling proteins, such as Ras GTPases and Src kinase, to the negatively charged cellular membranes. Much less, however, is known about the influence of electrostatic interactions on the lateral dynamics of these proteins. We developed a dynamic Monte-Carlo automaton that faithfully simulates lateral diffusion of the adsorbed positively charged oligopeptides as well as the dynamics of mono- (phosphatidylserine) and polyvalent (PIP2) anionic lipids within the bilayer. In agreement with earlier results, our simulations reveal lipid demixing that leads to the formation of a lipid shell associated with the peptide. The computed association times and average numbers of bound lipids demonstrate that tetravalent PIP2 interacts with the peptide much more strongly than monovalent lipid. On the spatially homogeneous membrane, the lipid shell affects the behavior of the peptide only by weakly reducing its lateral mobility. However, spatially heterogeneous distributions of monovalent lipids are found to produce peptide drift, the velocity of which is determined by the total charge of the peptide-lipid complex. We hypothesize that this predicted phenomenon may affect the spatial distribution of proteins with polybasic domains in the context of cell-signaling events that alter the local density of monovalent anionic lipids.  相似文献   

20.
Summary This review focuses on the mechanism of action of phospholipase A2 from cobra venom (Naja naja naja) toward the lipid/water interface. Particular points of interest include dramatic changes in the enzyme activity if the physical state of its substrate is altered and the activation of the enzyme by phosphorylcholine containing lipids. The experimental findings include the following: Micellar substrates are hydrolyzed faster by the enzyme than various bilayer forms of substrate aggregation. The activity of the enzyme toward short chain phospholipids increases suddenly above their critical micelle concentrations. An abrupt change in susceptibility to the enzyme is observed at the thermotropic phase transition of phospholipid vesicles. The enzyme shows the kinetic phenomena of surface dilution and activation by certain lipids, which suggest a two-step mechanism of action. A model is discussed which accommodates the present data both for the action of this enzyme at various lipid/water interfaces as well as its interaction with synthetic monomeric ligands and substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号