首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Protein similarity comparisons may be made on a local or global basis and may consider sequence information or differing levels of structural information. We present a local three‐dimensional method that compares protein binding site surfaces in full atomic detail. The approach is based on the morphological similarity method which has been widely applied for global comparison of small molecules. We apply the method to all‐by‐all comparisons two sets of human protein kinases, a very diverse set of ATP‐bound proteins from multiple species, and three heterogeneous benchmark protein binding site data sets. Cases of disagreement between sequence‐based similarity and binding site similarity yield informative examples. Where sequence similarity is very low, high pocket similarity can reliably identify important binding motifs. Where sequence similarity is very high, significant differences in pocket similarity are related to ligand binding specificity and similarity. Local protein binding pocket similarity provides qualitatively complementary information to other approaches, and it can yield quantitative information in support of functional annotation. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

2.
The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Qu Y  Guo JT  Olman V  Xu Y 《Nucleic acids research》2004,32(2):551-561
Residual dipolar coupling (RDC) represents one of the most exciting emerging NMR techniques for protein structure studies. However, solving a protein structure using RDC data alone is still a highly challenging problem. We report here a computer program, RDC-PROSPECT, for protein structure prediction based on a structural homolog or analog of the target protein in the Protein Data Bank (PDB), which best aligns with the 15N–1H RDC data of the protein recorded in a single ordering medium. Since RDC-PROSPECT uses only RDC data and predicted secondary structure information, its performance is virtually independent of sequence similarity between a target protein and its structural homolog/analog, making it applicable to protein targets beyond the scope of current protein threading techniques. We have tested RDC-PROSPECT on all 15N–1H RDC data (representing 43 proteins) deposited in the BioMagResBank (BMRB) database. The program correctly identified structural folds for 83.7% of the target proteins, and achieved an average alignment accuracy of 98.1% residues within a four-residue shift.  相似文献   

4.
It is commonly believed that similarities between the sequences of two proteins infer similarities between their structures. Sequence alignments reliably recognize pairs of protein of similar structures provided that the percentage sequence identity between their two sequences is sufficiently high. This distinction, however, is statistically less reliable when the percentage sequence identity is lower than 30% and little is known then about the detailed relationship between the two measures of similarity. Here, we investigate the inverse correlation between structural similarity and sequence similarity on 12 protein structure families. We define the structure similarity between two proteins as the cRMS distance between their structures. The sequence similarity for a pair of proteins is measured as the mean distance between the sequences in the subsets of sequence space compatible with their structures. We obtain an approximation of the sequence space compatible with a protein by designing a collection of protein sequences both stable and specific to the structure of that protein. Using these measures of sequence and structure similarities, we find that structural changes within a protein family are linearly related to changes in sequence similarity.  相似文献   

5.
We use flexible backbone protein design to explore the sequence and structure neighborhoods of naturally occurring proteins. The method samples sequence and structure space in the vicinity of a known sequence and structure by alternately optimizing the sequence for a fixed protein backbone using rotamer based sequence search, and optimizing the backbone for a fixed amino acid sequence using atomic-resolution structure prediction. We find that such a flexible backbone design method better recapitulates protein family sequence variation than sequence optimization on fixed backbones or randomly perturbed backbone ensembles for ten diverse protein structures. For the SH3 domain, the backbone structure variation in the family is also better recapitulated than in randomly perturbed backbones. The potential application of this method as a model of protein family evolution is highlighted by a concerted transition to the amino acid sequence in the structural core of one SH3 domain starting from the backbone coordinates of an homologous structure.  相似文献   

6.
The ability to determine the structure of a protein in solution is a critical tool for structural biology, as proteins in their native state are found in aqueous environments. Using a physical chemistry based prediction protocol, we demonstrate the ability to reproduce protein loop geometries in experimentally derived solution structures. Predictions were run on loops drawn from (1)NMR entries in the Protein Databank (PDB), and from (2) the RECOORD database in which NMR entries from the PDB have been standardized and re-refined in explicit solvent. The predicted structures are validated by comparison with experimental distance restraints, a test of structural quality as defined by the WHAT IF structure validation program, root mean square deviation (RMSD) of the predicted loops to the original structural models, and comparison of precision of the original and predicted ensembles. Results show that for the RECOORD ensembles, the predicted loops are consistent with an average of 95%, 91%, and 87% of experimental restraints for the short, medium and long loops respectively. Prediction accuracy is strongly affected by the quality of the original models, with increases in the percentage of experimental restraints violated of 2% for the short loops, and 9% for both the medium and long loops in the PDB derived ensembles. We anticipate the application of our protocol to theoretical modeling of protein structures, such as fold recognition methods; as well as to experimental determination of protein structures, or segments, for which only sparse NMR restraint data is available.  相似文献   

7.
G Vriend  C Sander 《Proteins》1991,11(1):52-58
We present a fully automatic algorithm for three-dimensional alignment of protein structures and for the detection of common substructures and structural repeats. Given two proteins, the algorithm first identifies all pairs of structurally similar fragments and subsequently clusters into larger units pairs of fragments that are compatible in three dimensions. The detection of similar substructures is independent of insertion/deletion penalties and can be chosen to be independent of the topology of loop connections and to allow for reversal of chain direction. Using distance geometry filters and other approximations, the algorithm, implemented in the WHAT IF program, is so fast that structural comparison of a single protein with the entire database of known protein structures can be performed routinely on a workstation. The method reproduces known non-trivial superpositions such as plastocyanin on azurin. In addition, we report surprising structural similarity between ubiquitin and a (2Fe-2S) ferredoxin.  相似文献   

8.
9.
Studying similarities in protein molecules has become a fundamental activity in much of biology and biomedical research, for which methods such as multiple sequence alignments are widely used. Most methods available for such comparisons cater to studying proteins which have clearly recognizable evolutionary relationships but not to proteins that recognize the same or similar ligands but do not share similarities in their sequence or structural folds. In many cases, proteins in the latter class share structural similarities only in their binding sites. While several algorithms are available for comparing binding sites, there are none for deriving structural motifs of the binding sites, independent of the whole proteins. We report the development of SiteMotif, a new algorithm that compares binding sites from multiple proteins and derives sequence-order independent structural site motifs. We have tested the algorithm at multiple levels of complexity and demonstrate its performance in different scenarios. We have benchmarked against 3 current methods available for binding site comparison and demonstrate superior performance of our algorithm. We show that SiteMotif identifies new structural motifs of spatially conserved residues in proteins, even when there is no sequence or fold-level similarity. We expect SiteMotif to be useful for deriving key mechanistic insights into the mode of ligand interaction, predict the ligand type that a protein can bind and improve the sensitivity of functional annotation.  相似文献   

10.
Advances in structural genomics and protein structure prediction require the design of automatic, fast, objective, and well benchmarked methods capable of comparing and assessing the similarity of low-resolution three-dimensional structures, via experimental or theoretical approaches. Here, a new method for sequence-independent structural alignment is presented that allows comparison of an experimental protein structure with an arbitrary low-resolution protein tertiary model. The heuristic algorithm is given and then used to show that it can describe random structural alignments of proteins with different folds with good accuracy by an extreme value distribution. From this observation, a structural similarity score between two proteins or two different conformations of the same protein is derived from the likelihood of obtaining a given structural alignment by chance. The performance of the derived score is then compared with well established, consensus manual-based scores and data sets. We found that the new approach correlates better than other tools with the gold standard provided by a human evaluator. Timings indicate that the algorithm is fast enough for routine use with large databases of protein models. Overall, our results indicate that the new program (MAMMOTH) will be a good tool for protein structure comparisons in structural genomics applications. MAMMOTH is available from our web site at http://physbio.mssm.edu/~ortizg/.  相似文献   

11.
An automated algorithm is presented that delineates protein sequence fragments which display similarity. The method incorporates a selection of a number of local nonoverlapping sequence alignments with the highest similarity scores and a graphtheoretical approach to elucidate the consistent start and end points of the fragments comprising one or more ensembles of related subsequences. The procedure allows the simultaneous identification of different types of repeats within one sequence. A multiple alignment of the resulting fragments is performed and a consensus sequence derived from the ensemble(s). Finally, a profile is constructed form the multiple alignment to detect possible and more distant members within the sequence. The method tolerates mutations in the repeats as well as insertions and deletions. The sequence spans between the various repeats or repeat clusters may be of different lengths. The technique has been applied to a number of proteins where the repeating fragments have been derived from information additional to the protein sequences. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Proteins that contain similar structural elements often have analogous functions regardless of the degree of sequence similarity or structure connectivity in space. In general, protein structure comparison (PSC) provides a straightforward methodology for biologists to determine critical aspects of structure and function. Here, we developed a novel PSC technique based on angle-distance image (A-D image) transformation and matching, which is independent of sequence similarity and connectivity of secondary structure elements (SSEs). An A-D image is constructed by utilizing protein secondary structure information. According to various types of SSEs, the mutual SSE pairs of the query protein are classified into three different types of sub-images. Subsequently, corresponding sub-images between query and target protein structures are compared using modified cross-correlation approaches to identify the similarity of various patterns. Structural relationships among proteins are displayed by hierarchical clustering trees, which facilitate the establishment of the evolutionary relationships between structure and function of various proteins.Four standard testing datasets and one newly created dataset were used to evaluate the proposed method. The results demonstrate that proteins from these five datasets can be categorized in conformity with their spatial distribution of SSEs. Moreover, for proteins with low sequence identity that share high structure similarity, the proposed algorithms are an efficient and effective method for structural comparison.  相似文献   

13.
A computer program (ORB) has been developed to predict 1H,13C and 15N NMR chemical shifts of previouslyunassigned proteins. The program makes use of the information contained in achemical shift database of previously assigned proteins supplemented by astatistically derived averaged chemical shift database in which the shifts arecategorized according to their residue, atom and secondary structure type[Wishart et al. (1991) J. Mol. Biol., 222, 311–333]. The predictionprocess starts with a multiple alignment of all previously assigned proteinswith the unassigned query protein. ORB uses the sequence and secondarystructure alignment program XALIGN for this task [Wishart et al. (1994)CABIOS, 10, 121–132; 687–688]. The prediction algorithm in ORB isbased on a scoring of the known shifts for each sequence. The scores dependon global sequence similarity, local sequence similarity, structuralsimilarity and residue similarity and determine how much weight one particularshift is given in the prediction process. In situations where no applicablepreviously assigned chemical shifts are available, the shifts derived from theaveraged database are used. In addition to supplying the user with predictedchemical shifts, ORB calculates a confidence value for every prediction. Theseconfidence values enable the user to judge which predictions are the mostaccurate and they are particularly useful when ORB is incorporated into acomplete autoassignment package. The usefulness of ORB was tested on threemedium-sized proteins: an interleukin-8 analog, a troponin C synthetic peptideheterodimer and cardiac troponin C. Excellent results are obtained if ORB isable to use the chemical shifts of at least one highly homologous sequence.ORB performs well as long as the sequence identity between proteins with knownchemical shifts and the new sequence is not less than 30%.  相似文献   

14.
Despite significant methodological advances in protein structure determination high-resolution structures of membrane proteins are still rare, leaving sequence-based predictions as the only option for exploring the structural variability of membrane proteins at large scale. Here, a new structural classification approach for α-helical membrane proteins is introduced based on the similarity of predicted helix interaction patterns. Its application to proteins with known 3D structure showed that it is able to reliably detect structurally similar proteins even in the absence of any sequence similarity, reproducing the SCOP and CATH classifications with a sensitivity of 65% at a specificity of 90%. We applied the new approach to enhance our comprehensive structural classification of α-helical membrane proteins (CAMPS), which is primarily based on sequence and topology similarity, in order to find protein clusters that describe the same fold in the absence of sequence similarity. The total of 151 helix architectures were delineated for proteins with more than four transmembrane segments. Interestingly, we observed that proteins with 8 and more transmembrane helices correspond to fewer different architectures than proteins with up to 7 helices, suggesting that in large membrane proteins the evolutionary tendency to re-use already available folds is more pronounced.  相似文献   

15.
The experimental determination of scalar three-bond coupling constants represents a powerful method to probe both the structure and dynamics of proteins. The detailed structural interpretation of such coupling constants is usually based on Karplus relationships, which allow the measured couplings to be related to the torsion angles of the molecules. As the measured couplings are sensitive to thermal fluctuations, the parameters in the Karplus relationships are better derived from ensembles representing the distributions of dihedral angles present in solution, rather than from single conformations. We present a method to derive such parameters that uses ensembles of conformations determined through dynamic-ensemble refinement – a method that provides structural ensembles that simultaneously represent both the structure and the associated dynamics of a protein.  相似文献   

16.
MOTIVATION: Protein families can be defined based on structure or sequence similarity. We wanted to compare two protein family databases, one based on structural and one on sequence similarity, to investigate to what extent they overlap, the similarity in definition of corresponding families, and to create a list of large protein families with unknown structure as a resource for structural genomics. We also wanted to increase the sensitivity of fold assignment by exploiting protein family HMMs. RESULTS: We compared Pfam, a protein family database based on sequence similarity, to Scop, which is based on structural similarity. We found that 70% of the Scop families exist in Pfam while 57% of the Pfam families exist in Scop. Most families that occur in both databases correspond well to each other, but in some cases they are different. Such cases highlight situations in which structure and sequence approaches differ significantly. The comparison enabled us to compile a list of the largest families that do not occur in Scop; these are suitable targets for structure prediction and determination, and may be useful to guide projects in structural genomics. It can be noted that 13 out of the 20 largest protein families without a known structure are likely transmembrane proteins. We also exploited Pfam to increase the sensitivity of detecting homologs of proteins with known structure, by comparing query sequences to Pfam HMMs that correspond to Scop families. For SWISSPROT+TREMBL, this yielded an increase in fold assignment from 31% to 42% compared to using FASTA only. This method assigned a structure to 22% of the proteins in Saccharomyces cerevisiae, 24% in Escherichia coli, and 16% in Methanococcus jannaschii.  相似文献   

17.
Bostick DL  Shen M  Vaisman II 《Proteins》2004,56(3):487-501
A topological representation of proteins is developed that makes use of two metrics: the Euclidean metric for identifying natural nearest neighboring residues via the Delaunay tessellation in Cartesian space and the distance between residues in sequence space. Using this representation, we introduce a quantitative and computationally inexpensive method for the comparison of protein structural topology. The method ultimately results in a numerical score quantifying the distance between proteins in a heuristically defined topological space. The properties of this scoring scheme are investigated and correlated with the standard Calpha distance root-mean-square deviation measure of protein similarity calculated by rigid body structural alignment. The topological comparison method is shown to have a characteristic dependence on protein conformational differences and secondary structure. This distinctive behavior is also observed in the comparison of proteins within families of structural relatives. The ability of the comparison method to successfully classify proteins into classes, superfamilies, folds, and families that are consistent with standard classification methods, both automated and human-driven, is demonstrated. Furthermore, it is shown that the scoring method allows for a fine-grained classification on the family, protein, and species level that agrees very well with currently established phylogenetic hierarchies. This fine classification is achieved without requiring visual inspection of proteins, sequence analysis, or the use of structural superimposition methods. Implications of the method for a fast, automated, topological hierarchical classification of proteins are discussed.  相似文献   

18.
We have developed a computer program for the rapid assessment of the primary structure differences between a protein of unknown sequence and a homologous known protein. Both proteins are reduced, alkylated, and digested with the same hydrolytic agent. The unfractionated peptide mixtures are submitted to automatic sequence analysis. Based on the knowledge of the reference sequence, the program utilizes the analysis data to identify all the potential peptides present in the two mixtures, determining their primary structure, homology degree, and molecular weight calculated both as integer MH+ and average mass variables. These fingerprints allow the user to easily identify the structural differences between the two proteins and clarify possible doubts by a mass spectrometric analysis of the two mixtures. In order to verify the utility of the program, we provide an application example using the already reported data of two homologous proteins.  相似文献   

19.
Several studies based on the known three-dimensional (3-D) structures of proteins show that two homologous proteins with insignificant sequence similarity could adopt a common fold and may perform same or similar biochemical functions. Hence, it is appropriate to use similarities in 3-D structure of proteins rather than the amino acid sequence similarities in modelling evolution of distantly related proteins. Here we present an assessment of using 3-D structures in modelling evolution of homologous proteins. Using a dataset of 108 protein domain families of known structures with at least 10 members per family we present a comparison of extent of structural and sequence dissimilarities among pairs of proteins which are inputs into the construction of phylogenetic trees. We find that correlation between the structure-based dissimilarity measures and the sequence-based dissimilarity measures is usually good if the sequence similarity among the homologues is about 30% or more. For protein families with low sequence similarity among the members, the correlation coefficient between the sequence-based and the structure-based dissimilarities are poor. In these cases the structure-based dendrogram clusters proteins with most similar biochemical functional properties better than the sequence-similarity based dendrogram. In multi-domain protein families and disulphide-rich protein families the correlation coefficient for the match of sequence-based and structure-based dissimilarity (SDM) measures can be poor though the sequence identity could be higher than 30%. Hence it is suggested that protein evolution is best modelled using 3-D structures if the sequence similarities (SSM) of the homologues are very low.  相似文献   

20.
A DNA/protein sequence comparison is a popular computational tool for molecular biologists. Finding a good alignment implies an evolutionary and/or functional relationship between proteins or genomic loci. Sequential similarity between two proteins indicates their structural resemblance, providing a practical approach for structural modeling, when structure of one of these proteins is known. The first step in the homology modeling is a construction of an accurate sequence alignment. The commonly used alignment algorithms do not provide an adequate treatment of the structurally mismatched residues in locally dissimilar regions. We propose a simple modification of the existing alignment algorithm which treats these regions properly and demonstrate how this modification improves sequence alignments in real proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号