首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Metric craniofacial variation was studied in a number of skeletal samples that originated from the Mariana Islands and circum-Pacific regions. The broad comparisons including East/Southeast Asians, Polynesians, Melanesians, and Australians confirm the relationships between Mariana Islanders and East/Southeast Asians on the one hand and Polynesians on the other hand. A transformation of Melanesians into western Micronesians is not supported. The result of the principal component analysis indicates that the cranial morphological pattern of Mariana people shares the intermediate characteristics between those of typical East/Southeast Asians and several groups falling as outliers to more predominant Asian populations. Am J Phys Anthropol 104:411–425, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Distance analyses were applied to 11 craniofacial measurements recorded in samples from East and Southeast Asia, Australia, Melanesia, Polynesia, and Micronesia for the purpose of assessing the biological affinities and possible origins of these populations. A clear separation between Australomelanesians and other populations from East and Southeast Asia and the Pacific is evident. The craniofacial variations suggest that the generalized Asian populations (Negritos, Dayaks, Lesser Sunda Islands, etc.) represent at least part of the morphological background of not only the majority of present Southeast Asians, but also the Neolithic Jomon people and their lineage in Japan, Polynesians, and western Micronesians. The original craniofacial features of Southeast Asians may have occurred as the result of convergent microevolution due to similar environmental conditions such as tropical rain forest. This supports the local-evolution hypothesis for modern Southeast Asian craniofacial features. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Hmong-Mien (H-M) is a major language family in East Asia, and its speakers distribute primarily in southern China and Southeast Asia. To date, genetic studies on H-M speaking populations are virtually absent in the literature. In this report, we present the results of an analysis of genetic variations in the mitochondrial DNA (mtDNA) hypervariable segment 1 (HVS1) region and diagnostic variants in the coding regions in 537 individuals sampled from 17 H-M populations across East Asia. The analysis showed that the haplogroups that are predominant in southern East Asia, including B, R9, N9a, and M7, account for 63% (ranging from 45% to 90%) of mtDNAs in H-M populations. Furthermore, analysis of molecular variance (AMOVA), phylogenetic tree analysis, and principal component (PC) analysis demonstrate closer relatedness between H-M and other southern East Asians, suggesting a general southern origin of maternal lineages in the H-M populations. The estimated ages of the mtDNA lineages that are specific to H-M coincide with those based on archeological cultures that have been associated with H-M. Analysis of genetic distance and phylogenetic tree indicated some extent of difference between the Hmong and the Mien populations. Together with the higher frequency of north-dominating lineages observed in the Hmong people, our results indicate that the Hmong populations had experienced more contact with the northern East Asians, a finding consistent with historical evidence. Moreover, our data defined some new (sub-)haplogroups (A6, B4e, B4f, C5, F1a1, F1a1a, and R9c), which will direct further efforts to improve the phylogeny of East Asian mtDNAs.  相似文献   

4.
Nucleotide sequences of the major noncoding (D-loop) region of human mtDNA from five East Asian populations including mainland Japanese, Ainu, Ryukyuans, Koreans, and Chinese were analyzed. On the basis of a comparison of 482-bp sequences in 293 East Asians, 207 different sequence types were observed. Of these, 189 were unique to their respective populations, whereas 18 were shared between two or three populations. Among the shared types, eight were found in common between the mainland Japanese and Koreans, which is the largest number in the comparison. The intergenic COII/tRNA(Lys) 9-bp deletion was observed in every East Asian population with varying frequencies. The D-loop sequence variation suggests that the deletion event occurred only once in the ancestry of East Asians. Phylogenetic analysis revealed that East Asian lineages were classified into at least 18 monophyletic clusters, though lineages from the five populations were completely intermingled in the phylogenetic tree. However, we assigned 14 of the 18 clusters for their specificity on the basis of the population from which the maximum number of individuals in each cluster was derived. Of note is the finding that 50% of the mainland Japanese had continental specificity in which Chinese or Koreans were dominant, while < 20% of either Ryukyuans or Ainu possessed continental specificity. Phylogenetic analysis of the entire human population revealed the closest genetic affinity between the mainland Japanese and Koreans. Thus, the results of this study are compatible with the hybridization model on the origin of modern Japanese. It is suggested that approximately 65% of the gene pool in mainland Japanese was derived from the continental gene flow after the Yayoi Age.  相似文献   

5.
Despite recent advances in population genomics, much remains to be elucidated with regard to East Asian population history. The Ainu, a hunter–gatherer population of northern Japan and Sakhalin island of Russia, are thought to be key to elucidating the prehistory of Japan and the peopling of East Asia. Here, we study the genetic relationship of the Ainu with other East Asian and Siberian populations outside the Japanese archipelago using genome-wide genotyping data. We find that the Ainu represent a deep branch of East Asian diversity more basal than all present-day East Asian farmers. However, we did not find a genetic connection between the Ainu and populations of the Tibetan plateau, rejecting their long-held hypothetical connection based on Y chromosome data. Unlike all other East Asian populations investigated, the Ainu have a closer genetic relationship with northeast Siberians than with central Siberians, suggesting ancient connections among populations around the Sea of Okhotsk. We also detect a recent genetic contribution of the Ainu to nearby populations, but no evidence for reciprocal recent gene flow is observed. Whole genome sequencing of contemporary and ancient Ainu individuals will be helpful to understand the details of the deep history of East Asians.  相似文献   

6.
A nonsynonymous single nucleotide polymorphism (SNP), rs17822931-G/A (538G>A; Gly180Arg), in the ABCC11 gene determines human earwax type (i.e., wet or dry) and is one of most differentiated nonsynonymous SNPs between East Asian and African populations. A recent genome-wide scan for positive selection revealed that a genomic region spanning ABCC11, LONP2, and SIAH1 genes has been subjected to a selective sweep in East Asians. Considering the potential functional significance as well as the population differentiation of SNPs located in that region, rs17822931 is the most plausible candidate polymorphism to have undergone geographically restricted positive selection. In this study, we estimated the selection intensity or selection coefficient of rs17822931-A in East Asians by analyzing two microsatellite loci flanking rs17822931 in the African (HapMap-YRI) and East Asian (HapMap-JPT and HapMap-CHB) populations. Assuming a recessive selection model, a coalescent-based simulation approach suggested that the selection coefficient of rs17822931-A had been approximately 0.01 in the East Asian population, and a simulation experiment using a pseudo-sampling variable revealed that the mutation of rs17822931-A occurred 2006 generations (95% credible interval, 1,023-3,901 generations) ago. In addition, we show that absolute latitude is significantly associated with the allele frequency of rs17822931-A in Asian, Native American, and European populations, implying that the selective advantage of rs17822931-A is related to an adaptation to a cold climate. Our results provide a striking example of how local adaptation has played a significant role in the diversification of human traits.  相似文献   

7.
The emerging limbs and twigs of the East Asian mtDNA tree   总被引:33,自引:0,他引:33  
We determine the phylogenetic backbone of the East Asian mtDNA tree by using published complete mtDNA sequences and assessing both coding and control region variation in 69 Han individuals from southern China. This approach assists in the interpretation of published mtDNA data on East Asians based on either control region sequencing or restriction fragment length polymorphism (RFLP) typing. Our results confirm that the East Asian mtDNA pool is locally region-specific and completely covered by the two superhaplogroups M and N. The phylogenetic partitioning based on complete mtDNA sequences corroborates existing RFLP-based classification of Asian mtDNA types and supports the distinction between northern and southern populations. We describe new haplogroups M7, M8, M9, N9, and R9 and demonstrate by way of example that hierarchically subdividing the major branches of the mtDNA tree aids in recognizing the settlement processes of any particular region in appropriate time scale. This is illustrated by the characteristically southern distribution of haplogroup M7 in East Asia, whereas its daughter-groups, M7a and M7b2, specific for Japanese and Korean populations, testify to a presumably (pre-)Jomon contribution to the modern mtDNA pool of Japan.  相似文献   

8.
The population history of Southeast (SE) China remains poorly understood due to the sparse sampling of present-day populations and limited modeling with ancient genomic data. We report genome-wide genotyping data from 207 present-day Han Chinese and Hmong-Mien (HM)-speaking She people from Fujian and Taiwan Island, SE China. We coanalyzed 66 Early Neolithic to Iron Age ancient Fujian and Taiwan Island individuals obtained from previously published works to explore the genetic continuity and admixture based on patterns of genetic variations of the high-resolution time transect. We found the genetic differentiation between northern and southern East Asians was defined by a north–south East Asian genetic cline and our studied southern East Asians were clustered in the southern end of this cline. The southeastern coastal modern East Asians are genetically similar to other southern indigenous groups as well as geographically close to Neolithic-to-Iron Age populations, but they also shared excess alleles with post-Neolithic Yellow River ancients, which suggested a southward gene flow on the modern southern coastal gene pool. In addition, we identified one new HM genetic cline in East Asia with the coastal Fujian HM-speaking She localizing at the intersection between HM and Han clines. She people show stronger genetic affinity with southern East Asian indigenous populations, with the main ancestry deriving from groups related to southeastern ancient indigenous rice farmers. The southeastern Han Chinese could be modeled with the primary ancestry deriving from the group related to the Yellow River Basin millet farmers and the remaining from groups related to rice farmers, which was consistent with the northern China origin of modern southeastern Han Chinese and in line with the historically and archaeologically attested southward migrations of Han people and their ancestors. Our estimated north–south admixture time ranges based on the decay of the linkage disequilibrium spanned from the Bronze Age to historic periods, suggesting the recent large-scale population migrations and subsequent admixture participated in the formation of modern Han in SE Asia.  相似文献   

9.
Very little is known about the genes and mechanisms affecting skin lightening in Asian populations. In this study, two coding SNPs, c.G1129A (R163Q) at the MC1R (melanocortin 1 receptor) gene and c.A1962G (H615R) at the OCA2 (oculocutaneous albinism type II) gene, were investigated in a total of 1,809 individuals in 16 populations from various areas. The Q163 and R615 alleles prevailed almost exclusively in East and Southeast Asian populations. Wright’s F ST was 0.445 for R163Q and 0.385 for H615R among the 16 populations. The frequency of the Q163 allele was higher in Northeast Asians than in Southeast Asians. The frequency of the R615 allele was highest in South China and unlikely to be associated with levels of ultraviolet radiation. This allele may be a good marker to study the genetic affinity among East Asians because of its restricted distribution and marked difference in allele frequency.  相似文献   

10.
CD5 is a lymphocyte surface coreceptor of still incompletely understood function. Currently available information indicates that CD5 participates not only in cell-to-cell immune interactions through still poorly defined endogenous ligands expressed on hemopoietic and nonhemopoietic cells but also in recognition of exogenous and highly conserved microbial structures such as fungal β-glucans. Preceding single nucleotide polymorphism (SNP) data analysis provided evidence for a recent selective sweep in East Asia and suggested a nonsynonymous substitution at position 471 (A471V; rs2229177) of the cytoplasmatic region of the CD5 receptor as the most plausible target of selection. The present report further investigates the role of natural selection in the CD5 gene by a resequencing approach in 60 individuals representing populations from 3 different continents (20 Africans, 20 Europeans and 20 East Asians) and by functionally assaying the relevance of the A471V replacement on CD5 signaling. The high differentiation pattern found at the nonsynonymous A471V site together with the low diversity, most of the performed neutrality tests (Tajima's D, Fu and Li's F* and D*, and Fu's Fs) and the predominance of a major haplotype in East Asians strongly argue in favor of positive selection for the A471V site. Importantly, anti-CD5 monoclonal antibody cross-linking unveiled significant differences among A471V variants regarding the mitogen-activated protein kinase (MAPK) cascade activation on COS7 and on human peripheral blood mononuclear cells. Similar differences on MAPK activation and IL-8 cytokine release were also observed upon exposure of HEK293 cell transfectants expressing the A471V variants to Zymosan, a β-glucan-rich fungal particle. Taken together, the results provide evidence for the hypothesis of an adaptive role of the A471V substitution to environmental challenges, most likely infectious pathogens, in East Asian populations.  相似文献   

11.

Background

The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level.

Methodology/Principal Findings

To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a.

Conclusions/Significance

Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations.  相似文献   

12.
邢松  周蜜  刘武 《人类学学报》2014,33(4):471-482
现代人群形成与分化造成的具有地域差别的人群标志性体质特征是研究人群之间关系的重要信息。作为臼齿形态测量的组成部分,上颌第一臼齿齿尖相对面积在人类演化以及现代人群关系上的研究价值已经引起了人类学界的关注。然而,迄今对上颌第一臼齿齿尖相对面积在世界各地的现代人群之间是否具有地域性差异还不是很清楚。本文对代表亚洲和非洲现代人群的208枚上颌第一臼齿齿尖相对面积的研究发现,上颌第一臼齿四个主要齿尖相对面积在亚洲和非洲现代人群之间都存在明显差异。亚洲现代人上颌第一臼齿近中齿尖(原尖和前尖)相对面积较大,而远中齿尖(后尖和次尖)相对面积较小。非洲现代人上颌第一臼齿各齿尖相对面积均较亚洲人群具有更大的变异,尤其在原尖和次尖相对面积上。采用判别分析可以将69.2%的标本正确地判别归入其原来所属的组群。通过与化石人类相关数据的对比发现,非洲现代人比亚洲现代人在原尖和次尖相对面积以及前尖/后尖相对面积比例上更加接近于人类演化的早期形式。现有的证据显示,亚洲和非洲现代人群在齿尖相对面积的分化至少可以追溯到全新世早期,更加精确的分化时间需要结合更新世晚期甚至中期化石人类数据去获得。本研究揭示出的非洲现代人上颌第一臼齿齿尖相对面积的高异质性(heterogeneity)和相对原始性在现代人形成与分化方面的作用尚需进一步的研究。  相似文献   

13.
崔娅铭 《人类学学报》2016,35(1):89-100
中面部的形态是个人识别的重要依据,并且长期以来都在各人种的形态对比研究中占有重要的地位。而中面部骨骼形态复杂,骨骼表面不规则,很难用传统的方法来进行测量和比较。本文采用基于三维表面半标志点的几何形态测量学研究东亚现代人中面部的形态及其变异范围,并与其他各大地理位置中的现代人群的中面部形态进行对比,为人类演化和对比不同人群的形态研究建立基础数据。本研究结果显示中面部形态能够大致区分各个现代人群,其中东亚现代人与除美洲印第安人以外的所有现代人的中面部形状之间都具有较为明显的差异。东亚现代人与澳大利亚和非洲的现代人中面部形状之间的差别最明显,而与欧洲和东南亚现代人的分布范围有部分重叠。东亚现代人群中面部的平均形状却具有非常明显的特点:沿着正中矢状面的结构回缩,而两侧的结构向前方和两侧突出。而其他现代人群的中面部平均形状则呈现出相反的特征,即沿着正中矢状面的结构为突出,而两侧的结构回缩的特征。这些特点在东亚发现的化石人类标本中也有很高的发生率,这表明这些中面部特征在东亚人类进化的序列是连续的,并无受到干扰的迹象。  相似文献   

14.
Evolutionary relationships of human populations on a global scale   总被引:28,自引:2,他引:26  
Using gene frequency data for 29 polymorphic loci (121 alleles), we conducted a phylogenetic analysis of 26 representative populations from around the world by using the neighbor-joining (NJ) method. We also conducted a separate analysis of 15 populations by using data for 33 polymorphic loci. These analyses have shown that the first major split of the phylogenetic tree separates Africans from non-Africans and that this split occurs with a 100% bootstrap probability. The second split separates Caucasian populations from all other non-African populations, and this split is also supported by bootstrap tests. The third major split occurs between Native American populations and the Greater Asians that include East Asians (mongoloids), Pacific Islanders, and Australopapuans (native Australians and Papua New Guineans), but Australopapuans are genetically quite different from the rest of the Greater Asians. The second and third levels of population splitting are quite different from those of the phylogenetic tree obtained by Cavalli- Sforza et al. (1988), where Caucasians, Northeast Asians, and Ameridians from the Northeurasian supercluster and the rest of non- Africans form the Southeast Asian supercluster. One of the major factors that caused the difference between the two trees is that Cavalli-Sforza et al. used unweighted pair-group method with arithmetic mean (UPGMA) in phylogenetic inference, whereas we used the NJ method in which evolutionary rate is allowed to vary among different populations. Bootstrap tests have shown that the UPGMA tree receives poor statistical support whereas the NJ tree is well supported. Implications that the phylogenetic tree obtained has on the current controversy over the out-of-Africa and the multiregional theories of human origins are discussed.   相似文献   

15.
Origin of the polymorphism of the involucrin gene in Asians.   总被引:1,自引:0,他引:1       下载免费PDF全文
The involucrin gene, encoding a protein of the terminally differentiated keratinocyte, is polymorphic in the human. There is polymorphism of marker nucleotides a two positions in the coding region, and there are over eight polymorphic forms based on the number and kind of 10-codon tandem repeats in that part of the coding region most recently added in the human lineage. The involucrin alleles of Caucasians and Africans differ in both nucleotides and repeat patterns. We show that the involucrin alleles of East Asians (Chinese and Japanese) can be divided into two populations according to whether they possess the two marker nucleotides typical of Africans or Caucasians. The Asian population bearing Caucasian-type marker nucleotides has repeat patterns similar to those of Caucasians, whereas Asians bearing African-type marker nucleotides have repeat patterns that resemble those of Africans more than those of Caucasians. The existence of two populations of East Asian involucrin alleles gives support for the existence of a Eurasian stem lineage from which Caucasians and a part of the Asian population originated.  相似文献   

16.
The mtDNAs of 76 individuals representing the aboriginal populations of South Siberia, the Tuvinians and Buryats, were subjected to restriction fragment length polymorphism (RFLP) analysis and control region hypervariable segment I (HVS-I) sequencing, and the resulting data were combined with those available for other Siberian and East Asian populations and subjected to statistical and phylogenetic analysis. This analysis showed that the majority of the Tuvinian and Buryat mtDNAs (94.4% and 92.5%, respectively) belong to haplogroups A, B, C, D, E, F, and M*, which are characteristic of Mongoloid populations. Furthermore, the Tuvinians and Buryats harbor four Asian- and Native American-specific haplogroups (A-D) with frequencies (72.2% and 55%, respectively) exceeding those reported previously for Mongolians, Chinese, and Tibetans. They represent, therefore, the populations that are most closely related to New World indigenous groups. Despite their geographical proximity, the Tuvinians and Buryats shared no HVS-I sequences in common, although individually they shared such sequences with a variety of other Siberian and East Asian populations. In addition, phylogenetic and principal component analyses data of mtDNA sequences show that the Tuvinians clustered more closely with Turkic-speaking Yakuts, whereas the Mongolic-speaking Buryats clustered closer to Korean populations. Furthermore, HVS-I sequences, comprising one-fourth of the Buryat lineages and characterized by the only C-to-T transition at nucleotide position 16223, were identified as different RFLP haplotypes (B, C, D, E, M*, and H). This finding appears to indicate the putative ancestral state of the 16223T HVS-I sequences to Mongoloid macrohaplogroup M, at least. Finally, the results of nucleotide diversity analysis in East Asian and Siberian populations suggest that Central and East Asia were the source areas from which the genetically heterogeneous Tuvinians and Buryats first emerged.  相似文献   

17.
This study attempts to ascertain genetic affinities between Native American and East Asian populations by analyzing four polymorphic Alu insertions (PAIs) and three L1 polymorphic loci. These two genetic systems demonstrated strong congruence when levels of diversity and genetic distances were considered. Overall, genetic relatedness within Native American groups does not correlate with geographical and linguistic structure, although strong grouping for Native Americans with East Asians was demonstrated, with clear discrimination from African and European groups. Most of the variation was assigned to differences occurring within groups, but the interpopulation variation found for South Amerindians was recognizably higher in comparison to the other sampled groups of populations. Our data suggest that bottleneck events followed by strong influence of genetic drift in the process of the peopling of the Americas may have been determinant factors in delineating the genetic background of present-day South Amerindians. Since no clear subgroups were detected within Native Americans and East Asians, there is no indication of multiple waves in the early colonization of the New World.  相似文献   

18.
Most genetic data suggest that Australian aborigines and Southeast Asians associate, but their relative evolutionary relationship has remained obscure. Historically, the study of tooth crown variables has been important in establishing phylogenetic relationships. Through the quantification of whole tooth structure (GDP), including root, pulp, and enamel, a likely Eurasian phylogeny emerged from a canonical discriminant analysis of the microevolution among the populations. The analysis suggested that in modern human evolutionary history, Australian aborigines are the best representative extant population (first branch) from an unknown antecedent Eurasian founder population. The next branch from the Asian-based antecedent population was Caucasoids. Within the resident antecedent East Asian population, Southeast Asians then evolved, followed by a branch that lead to antecedent east Central Asians. Mongolians and all Native Americans independently evolved from this antecedent east Central Asian population. The relatively short morphogenetic separation between two areas that have been isolated for great periods of time, i.e., Australian aborigines and Native Americans, suggests that their association is not due to gene flow.  相似文献   

19.
Present human populations show a complex network of genetic relationships, which reflects mainly their unique origin and their migration and isolation history since the recent creation of modern man. The scrutiny of their genetic characteristics, according to GM polymorphism, shows that the continuity of the genetic variation between populations from neighbouring continents, assured by intermediate world part populations, is against any attempt to divide present human populations into major groups. GM polymorphism analysis also shows three remarkable levels of genetic differentiation, which would have appeared, respectively, within populations of sub-Saharan Africa, Europe and East Asia. The first small groups of people that split from the common ancestral population gave the sub-Saharan Africans. On the other hand, Asians diverged mainly from Europeans and Near East populations during a later period. The confrontation between the phylogeny and the frequency distribution of GM haplotypes shows that the ancestral population of actual South-Arabia people could be a candidate for a common ancestral population. The first major expansions of modern humans were proposed in a hypothetical scenario, which will open a new track in the research of our geographic origin.  相似文献   

20.
This article uses metric and nonmetric dental data to test the "two-layer" or immigration hypothesis whereby Southeast Asia was initially occupied by an "Australo-Melanesian" population that later underwent substantial genetic admixture with East Asian immigrants associated with the spread of agriculture from the Neolithic period onwards. We examined teeth from 4,002 individuals comprising 42 prehistoric and historic samples from East Asia, Southeast Asia, Australia, and Melanesia. For the odontometric analysis, dental size proportions were compared using factor analysis and Q-mode correlation coefficients, and overall tooth size was also compared between population samples. Nonmetric population affinities were estimated by Smith's distances, using the frequencies of 16 tooth traits. The results of both the metric and nonmetric analyses demonstrate close affinities between recent Australo-Melanesian samples and samples representing early Southeast Asia, such as the Early to Middle Holocene series from Vietnam, Malaysia, and Flores. In contrast, the dental characteristics of most modern Southeast Asians exhibit a mixture of traits associated with East Asians and Australo-Melanesians, suggesting that these populations were genetically influenced by immigrants from East Asia. East Asian metric and/or nonmetric traits are also found in some prehistoric samples from Southeast Asia such as Ban Kao (Thailand), implying that immigration probably began in the early Neolithic. Much clearer influence of East Asian immigration was found in Early Metal Age Vietnamese and Sulawesi samples. Although the results of this study are consistent with the immigration hypothesis, analysis of additional Neolithic samples is needed to determine the exact timing of population dispersals into Southeast Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号