首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li J  Abel R  Zhu K  Cao Y  Zhao S  Friesner RA 《Proteins》2011,79(10):2794-2812
A novel energy model (VSGB 2.0) for high resolution protein structure modeling is described, which features an optimized implicit solvent model as well as physics‐based corrections for hydrogen bonding, π–π interactions, self‐contact interactions, and hydrophobic interactions. Parameters of the VSGB 2.0 model were fit to a crystallographic database of 2239 single side chain and 100 11–13 residue loop predictions. Combined with an advanced method of sampling and a robust algorithm for protonation state assignment, the VSGB 2.0 model was validated by predicting 115 super long loops up to 20 residues. Despite the dramatically increasing difficulty in reconstructing longer loops, a high accuracy was achieved: all of the lowest energy conformations have global backbone RMSDs better than 2.0 Å from the native conformations. Average global backbone RMSDs of the predictions are 0.51, 0.63, 0.70, 0.62, 0.80, 1.41, and 1.59 Å for 14, 15, 16, 17, 18, 19, and 20 residue loop predictions, respectively. When these results are corrected for possible statistical bias as explained in the text, the average global backbone RMSDs are 0.61, 0.71, 0.86, 0.62, 1.06, 1.67, and 1.59 Å. Given the precision and robustness of the calculations, we believe that the VSGB 2.0 model is suitable to tackle “real” problems, such as biological function modeling and structure‐based drug discovery. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

2.
In recent years, it has been repeatedly demonstrated that the coordinates of the main-chain atoms alone are sufficient to determine the side-chain conformations of buried residues of compact proteins. Given a perfect backbone, the side-chain packing method can predict the side-chain conformations to an accuracy as high as 1.2 Å RMS deviation (RMSD) with greater than 80% of the χ angles correct. However, similarly rigorous studies have not been conducted to determine how well these apply, if at all, to the more important problem of homology modeling per se. Specifically, if the available backbone is imperfect, as expected for practical application of homology modeling, can packing constraints alone achieve sufficiently accurate predictions to be useful? Here, by systematically applying such methods to the pairwise modeling of two repressor and two cro proteins from the closely related bacteriophages 434 and P22, we find that when the backbone RMSD is 0.8 Å, the prediction on buried side chain is accurate with an RMS error of 1.8 Å and approximately 70% of the χ angles correctly predicted. When the backbone RMSD is larger, in the range of 1.6–1.8 Å, the prediction quality is still significantly better than random, with RMS error at 2.2 Å on the buried side chains and 60% accuracy on χ angles. Together these results suggest the following rules-of-thumb for homology modeling of buried side chains. When the sequence identity between the modeled sequence and the template sequence is >50% (or, equivalently, the expected backbone RMSD is <1 Å), side-chain packing methods work well. When sequence identity is between 30–50%, reflecting a backbone RMS error of 1–2 Å, it is still valid to use side-chain packing methods to predict the buried residues, albeit with care. When sequence identity is below 30% (or backbone RMS error greater than 2 Å), the backbone constraint alone is unlikely to produce useful models. Other methods, such as those involving the use of database fragments to reconstruct a template backbone, may be necessary as a complementary guide for modeling.  相似文献   

3.
We compare the modelling accuracy of two common rotamer libraries, the Dunbrack-Cohen and the 'Penultimate' rotamer libraries, with that of a novel library of discrete side chain conformations extracted from the Protein Data Bank. These side chain conformer libraries are extracted automatically from high-quality protein structures using stringent filters and maintain crystallographic bond lengths and angles. This contrasts with traditional rotamer libraries defined in terms of chi angles under the assumption of idealized covalent geometry. We demonstrate that side chain modelling onto native and near-native main chain conformations is significantly more successful with the conformer libraries than with the rotamer libraries when solely considering excluded-volume interactions. The rotamer libraries are inadequate to model side chains without atomic clashes on over 20% of targets if the backbone is held fixed in the native conformation. An algorithm is described for simultaneously modelling both main chain and side chain atoms during discrete ab initio sampling. The resulting models have equivalent root mean square deviations from the experimentally determined protein loops as models from backbone-only ensembles, indicating that all-atom modelling does not detract from the accuracy of conformational sampling.  相似文献   

4.
5.
Grid-free protein folding simulations based on sequence and secondary structure knowledge (using mostly experimentally determined secondary structure information but also analysing results from secondary structure predictions) were investigated using the genetic algorithm, a backbone representation, and standard dihedral angular conformations. Optimal structures are selected according to basic protein building principles. Having previously applied this approach to proteins with helical topology, we have now developed additional criteria and weights for β-strand- containing proteins, validated them on four small β-strand-rich proteins with different topologies, and tested the general performance of the method on many further examples from known protein structures with mixed secondary structural type and less than 100 amino acid residues.Topology predictions close to the observed experimental structures were obtained in four test cases together with fitness values that correlated with the similarity of the predicted topology to the observed structures. Root-mean-square deviation values of Cαatoms in the superposed predicted and observed structures, the latter of which had different topologies, were between 4.5 and 5.5 Å (2.9 to 5.1 Å without loops). Including 15 further protein examples with unique folds, root-mean-square deviation values ranged between 1.8 and 6.9 Å with loop regions and averaged 5.3 Å and 4.3 Å, including and excluding loop regions, respectively.  相似文献   

6.
We present a novel search strategy for determining the optimal packing of protein secondary structure elements. The approach is based on conformational energy optimization using a predetermined set of side chain rotamers and appropriate methods for sampling the conformational space of peptide fragments having fixed backbone geometries. An application to the 4-helix bundle of myohemerythrin is presented. It is shown that the conformations of the amino acid side chains are largely determined at the level of helix pairs and that superposition of these results can be used to construct the full bundle. The final solution obtained, taking into account restrictions due to the lateral amphiphilicity of the helices, differs from the native structure by only a 20° rotation of a single helix. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The magnitude of the conformational entropy change experienced by the peptide backbone upon protein folding was investigated experimentally and by computational analysis. Experimentally, two different pairs of mutants of a 33 amino acid peptide corresponding to the leucine zipper region of GCN4 were used for high-sensitivity microcalorimetric analysis. Each pair of mutants differed only by having alanine or glycine at a specific solvent-exposed position under conditions in which the differences in stability could be attributed to differences in the conformational entropy of the unfolded state. The mutants studied were characterized by different stabilities but had identical heat capacity changes of unfolding (ΔCp), identical solvent-related entropies of unfolding (ΔSsolv), and identical enthalpies of unfolding (ΔH) at equivalent temperatures. Accordingly, the differences in stability between the different mutants could be attributed to differences in conformational entropy. The computational studies were aimed at generating the energy profile of backbone conformations as a function of the main chain dihedral angles ϕ and ϱ. The energy profiles permit a direct calculation of the probability distribution of different conformers and therefore of the conformational entropy of the backbone. The experimental results presented in this paper indicate that the presence of the methyl group in alanine reduces the conformational entropy of the peptide backbone by 2.46 ± 0.2 cal/K · mol with respect to that of glycine, consistent with a 3.4-fold reduction in the number of allowed conformations in the alanine-containing peptides. Similar results were obtained from the energy profiles. The computational analysis also indicates that the addition of further carbon atoms to the side chain had only a small effect as long as the side chains were unbranched at position β. A further reduction with respect to Ala of only 0.61 and 0.81 cal/K · mol in the backbone entropy was obtained for leucine and lysine, respectively. β-branching (Val) produces the largest decrease in conformational entropy (1.92 cal/K · mol less than Ala). Finally, the backbone entropy change associated with the unfolding of an α-helix is 6.51 cal/K · mol for glycine. These and previous results have allowed a complete estimation of the conformational entropy changes associated with protein folding. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Atomic displacement parameters — B factors of the eight crambin crystal structures obtained at 0.54–1.5 Å resolution and temperatures of 100–293 K have been analyzed. The comparable contributions to the B factor values are the intramolecular motions which are modeled by the harmonic vibration calculations and derived from the molecular dynamics simulation (MD) as well as rigid body changes in the position of a protein molecule as a whole. In solution for the average NMR structure of crambin the amplitudes of the backbone atomic fluctuations of the most residues of the segments with the regular backbone conformations are close to the amplitudes of the small scale harmonic vibrations. For the same residues the probability of the medium scale fluctuations fixed by the hydrogen exchange method is very low. The restricted conformational mobility of those segments is coupled with the depressed amplitudes of the fluctuation changes of the tertiary structure registered by the residue accessibility changes in an ensemble of NMR structures that forms the average NMR structure of crambin. The amplitudes of temperature fluctuations of backbone atoms and the tertiary structure raise in the segment with the irregular conformations, turn and loops. In the same segments the amplitudes of the calculated harmonic vibrations also increase, but to a lesser extent and especially in the interhelical loop with the most strong and complicated fluctuation changes of the backbone conformation. In solution for the NMR structure in this loop the conformational transitions occur between the conformational substates separated by the energy barriers, but they are not observed even in the long 100 ns trajectories from the MD simulation of crambin. These strong local fluctuation changes of the structure may play a key role in the protein functioning and modern performance improvements in the MD simulation techniques are oriented to increase the probability of protein appearance in the trajectories from the MD simulations.  相似文献   

9.
Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy‐based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data‐set, the EBL was created in a backbone‐independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone‐dependent libraries are more efficient in side chain optimization. Here we present the backbone‐dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone‐dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone‐independent version of the library. Proteins 2014; 82:3177–3187. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
We present a novel de novo method to generate protein models from sparse, discretized restraints on the conformation of the main chain and side chain atoms. We focus on Calpha-trace generation, the problem of constructing an accurate and complete model from approximate knowledge of the positions of the Calpha atoms and, in some cases, the side chain centroids. Spatial restraints on the Calpha atoms and side chain centroids are supplemented by constraints on main chain geometry, phi/xi angles, rotameric side chain conformations, and inter-atomic separations derived from analyses of known protein structures. A novel conformational search algorithm, combining features of tree-search and genetic algorithms, generates models consistent with these restraints by propensity-weighted dihedral angle sampling. Models with ideal geometry, good phi/xi angles, and no inter-atomic overlaps are produced with 0.8 A main chain and, with side chain centroid restraints, 1.0 A all-atom root-mean-square deviation (RMSD) from the crystal structure over a diverse set of target proteins. The mean model derived from 50 independently generated models is closer to the crystal structure than any individual model, with 0.5 A main chain RMSD under only Calpha restraints and 0.7 A all-atom RMSD under both Calpha and centroid restraints. The method is insensitive to randomly distributed errors of up to 4 A in the Calpha restraints. The conformational search algorithm is efficient, with computational cost increasing linearly with protein size. Issues relating to decoy set generation, experimental structure determination, efficiency of conformational sampling, and homology modeling are discussed.  相似文献   

11.
Incorporation of effective backbone sampling into protein simulation and design is an important step in increasing the accuracy of computational protein modeling. Recent analysis of high-resolution crystal structures has suggested a new model, termed backrub, to describe localized, hinge-like alternative backbone and side-chain conformations observed in the crystal lattice. The model involves internal backbone rotations about axes between C-alpha atoms. Based on this observation, we have implemented a backrub-inspired sampling method in the Rosetta structure prediction and design program. We evaluate this model of backbone flexibility using three different tests. First, we show that Rosetta backrub simulations recapitulate the correlation between backbone and side-chain conformations in the high-resolution crystal structures upon which the model was based. As a second test of backrub sampling, we show that backbone flexibility improves the accuracy of predicting point-mutant side-chain conformations over fixed backbone rotameric sampling alone. Finally, we show that backrub sampling of triosephosphate isomerase loop 6 can capture the millisecond/microsecond oscillation between the open and closed states observed in solution. Our results suggest that backrub sampling captures a sizable fraction of localized conformational changes that occur in natural proteins. Application of this simple model of backbone motions may significantly improve both protein design and atomistic simulations of localized protein flexibility.  相似文献   

12.
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All‐atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side‐chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near‐native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402–1412. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
Chemical shifts contain substantial information about protein local conformations. We present a method to assign individual protein backbone dihedral angles into specific regions on the Ramachandran map based on the amino acid sequences and the chemical shifts of backbone atoms of tripeptide segments. The method uses a scoring function derived from the Bayesian probability for the central residue of a query tripeptide segment to have a particular conformation. The Ramachandran map is partitioned into representative regions at two levels of resolution. The lower resolution partitioning is equivalent to the conventional definitions of different secondary structure regions on the map. At the higher resolution level, the α and β regions are further divided into subregions. Predictions are attempted at both levels of resolution. We compared our method with TALOS using the original TALOS database, and obtained comparable results. Although TALOS may produce the best results with currently available databases which are much enlarged, the Bayesian-probability-based approach can provide a quantitative measure for the reliability of predictions.  相似文献   

14.
Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better.  相似文献   

15.
Theoretical studies on glycyl-alanyl and seryl dipeptides were performed to determine the probable backbone and side-group conformations that are preferred for solvent interaction. By following the method of Lee & Richards [(1971) J. Mol. Biol. 55, 379-400], a solute molecule is represented by a set of interlocking spheres of appropriate van der Waals radii assigned to each atom, and a solvent (water) molecule is rolled along the envelope of the van der Waals surface, and the surface accessible to the solvent molecule, and hence the solvent accessibility for a particular conformation of the solute molecule, is computed. From the calculated solvent accessibilities for various conformations, solvation maps for dipeptides were constructed. These solvation maps suggest that the backbone polar atoms could interact with solvent molecules selectively, depending on the backbone conformation. A conformation in the right-handed bridge (zetaR) region is favoured for both solvent interaction and intrachain hydrogen-bonding. Also the backbone side-chain hydrogen-bonding within the same dipeptide fragment in proteins is less favoured than hydrogen-bonding between side chain and water and between side chain and atoms of other residues. Solvent accessibilities suggest that very short distorted alphaR-helical and extended-structural parts may be stabilized via solvent interaction, and this could easily be possible at the surface of the protein molecules, in agreement with protein-crystal data.  相似文献   

16.
ATTRACT: protein-protein docking in CAPRI using a reduced protein model   总被引:1,自引:0,他引:1  
Zacharias M 《Proteins》2005,60(2):252-256
Protein-protein complex structures have been predicted for CAPRI Rounds 3 and 5 using a reduced protein model. Proteins are represented by up to 3 pseudoatoms per amino acid. The docking approach termed ATTRACT is based on energy minimization in translational and rotational degrees of freedom of one protein with respect to another protein. The reduced protein model allows one to perform systematic docking minimization of many thousand start structures in reasonable computer time. Flexibility of critical surface side-chains can be accounted for by a multiple conformational copy approach. The multicopy approach allows simultaneous adjustment of side-chain conformations and optimization of translational and rotational degrees of freedom of one protein with respect to the partner during docking. For 3 (Targets 8, 14, and 19) out of 5 CAPRI targets, the approach resulted in predictions in close agreement with experiment [root-mean-square deviation (RMSD) of backbone atoms within 10 A of the protein-protein interface < 1.8 A]. The comparison of predicted and experimental structures of the CAPRI targets indicates that besides local conformational changes (e.g., changes in side-chain conformations), global conformational changes of the protein backbone can be critical for complex formation. These conformational changes not accounted for during docking are a likely reason for the unrealistic predictions in 2 cases (Targets 9 and 18).  相似文献   

17.
Predicting the conformations of loops is a critical aspect of protein comparative (homology) modeling. Despite considerable advances in developing loop prediction algorithms, refining loops in homology models remains challenging. In this work, we use antibodies as a model system to investigate strategies for more robustly predicting loop conformations when the protein model contains errors in the conformations of side chains and protein backbone surrounding the loop in question. Specifically, our test system consists of partial models of antibodies in which the “scaffold” (i.e., the portion other than the complementarity determining region, CDR, loops) retains native backbone conformation, whereas the CDR loops are predicted using a combination of knowledge‐based modeling (H1, H2, L1, L2, and L3) and ab initio loop prediction (H3). H3 is the most variable of the CDRs. Using a previously published method, a test set of 10 shorter H3 loops (5–7 residues) are predicted to an average backbone (N? Cα? C? O) RMSD of 2.7 Å while 11 longer loops (8–9 residues) are predicted to 5.1 Å, thus recapitulating the difficulties in refining loops in models. By contrast, in control calculations predicting the same loops in crystal structures, the same method reconstructs the loops to an average of 0.5 and 1.4 Å for the shorter and longer loops, respectively. We modify the loop prediction method to improve the ability to sample near‐native loop conformations in the models, primarily by reducing the sensitivity of the sampling to the loop surroundings, and allowing the other CDR loops to optimize with the H3 loop. The new method improves the average accuracy significantly to 1.3 Å RMSD and 3.1 Å RMSD for the shorter and longer loops, respectively. Finally, we present results predicting 8–10 residue loops within complete comparative models of five nonantibody proteins. While anecdotal, these mixed, full‐model results suggest our approach is a promising step toward more accurately predicting loops in homology models. Furthermore, while significant challenges remain, our method is a potentially useful tool for predicting antibody structures based on a known Fv scaffold. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
D R Ripoll  F Ni 《Biopolymers》1992,32(4):359-365
Energy refinement of the structure of a linear peptide, hirudin56-65, bound to thrombin was carried out using a conformational search method in combination with restrained minimization. Five conformations originated from nmr data and distance geometry calculations having a similar global folding pattern but quite different backbone conformations were used as the starting structures. As a result of this approach, a series of low-energy conformations compatible with a set of upper and lower bounds of interproton distances determined from transferred nuclear Overhauser effects were found. A comparison among the lowest energy conformations of each run showed that the combination of energy refinement plus distance constraints led to a very well-defined structure for both the backbone and the side chains of the last 7 residues of the polypeptide. Furthermore, the low-energy conformations generated with this technique contain a segment of 3(10)-helix involving the last 5 residues at the COOH terminal end.  相似文献   

19.
D R Ripoll  H A Scheraga 《Biopolymers》1990,30(1-2):165-176
The conformational space of the membrane-bound portion of melittin has been searched using the electrostatically driven Monte Carlo (EDMC) method with the ECEPP/2 (empirical conformational energy program for peptides) algorithm. The former methodology assumes that a polypeptide or protein molecule is driven toward the native structure by the combined action of electrostatic interactions and stochastic conformational changes associated with thermal movements. The algorithm produces a Monte Carlo search in the conformational hyperspace of the polypeptide using electrostatic predictions and a random sampling technique, combined with local minimization of the energy function, to locate low-energy conformations. As a result of 8 test calculations on the 20-residue membrane-bound portion of melittin, starting from six arbitrary and two completely random conformations, the method was able to locate a very low-energy region of the potential with a well-defined structure for the backbone. In all of the cases under study, the method found a cluster of similar low-energy conformations that agree well with the structure deduced from x-ray diffraction experiments and with one computed earlier by the build-up procedure.  相似文献   

20.
A model of nine proteins including side-chain atoms have been built from the known Cα coordinates and amino acid sequences using a Monte Carlo Protein Building Annealing method. The Cartesian coordinates for the side-chain atoms were established with bond lengths and angles selected randomly from within previously determined ranges. A simulated annealing technique is used to generate some 300 structures with differing side-chain conformations. The atomic coordinates of the backbone atoms are fixed during the simulated annealing process. The coordinates of the side-chain atoms of 300 low energy conformations are averaged to obtain a mean structure that is minimized with the Cα atoms constrained to their position in the x-ray structure using the OPLS/AMBER force field with the GB/SA water model. The rms deviation of the main-chain atoms (without Cβ) compared with the corresponding crystal structures is in the range 0.20–0.64 Å. The rms deviation of the side-chain atoms is between 1.72 and 2.71 Å and for all atoms is between 1.19 and 1.99 Å. The method is insensitive to random errors in the Cα positions and the computational requirement is modest. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号