首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Suwa 《Human Evolution》1996,11(3-4):269-282
The early hominid dental remains from the Omo succession represent a fragmentary but important source of information regarding hominid evolution during the 2 to 3 myr time period. As an initial step toward the evaluation of taxonomic affinities and evolutionary significance, the present study attempts serial allocations of 21 isolated mandibular molars from the Shungura and Usno Formations. A comparative sample consisting of 250 mandibular molars ofA.afarensis, A.africanus, A.robustus, A.boisei and earlyHomo was used to compile the baseline data for allocating the isolated Omo molars to serial positions. The methods employed in the present study include morphometric analyses of 5 cusp areas, 8 linear variables reflecting crown shape, and 4 measurements of fissure pattern. It was found that by combining morphological observations with both “restricted” and “non-restricted” applications of discriminant function analyses (sensu Albrecht, 1992), sufficiently reliable serial allocations could be attained.  相似文献   

2.
The discovery of Australopithecus afarensis has led to new interpretations of hominid phylogeny, some of which reject A. africanus as an ancestor of Homo. Analysis of buccolingual tooth crown dimensions in australopithecines and Homo species by Johanson and White (Science 202:321-330, 1979) revealed that the South African gracile australopithecines are intermediate in size between Laetoli/hadar hominids and South African robust hominids. Homo, on the other hand, displays dimensions similar to those of A. afarensis and smaller than those of other australopithecines. These authors conclude, therefore, that A. africanus is derived in the direction of A. robustus and is not an ancestor of the Homo clade. However, there is a considerable time gap (ca. 800,000 years) between the Laetoli/Hadar specimens and the earliest Homo specimens; "gracile" hominids from Omo fit into this chronological gap and are from the same geographic area. Because the early specimens at Omo have been designated A. afarensis and the later specimens classified as Homo habilis, Omo offers a unique opportunity to test hypotheses concerning hominid evolution, especially regarding the phylogenetic status of A. africanus. Comparisons of mean cheek teeth breadths disclosed the significant (P less than or equal to 0.05) differences between the Omo sample and the Laetoli/Hadar fossils (P4, M2, and M3), the Homo fossils (P3, P4, M1, M2, and M1), and A. africanus (M3). Of the several possible interpretations of these data, it appears that the high degree of similarity between the Omo sample and the South African gracile australopithecine material warrants considering the two as geographical variants of A. africanus. The geographic, chronologic, and metric attributes of the Omo sample argue for its lineal affinity with A. afarensis and Homo. In conclusion, a consideration of hominid postcanine dental metrics provides no basis for removing A. africanus from the ancestry of the Homo lineage.  相似文献   

3.
Crown and cusp areas of mandibular molars were measured and analyzed on a sample of 249 specimens attributed to Australopithecus afarensis, A. africanus, A. (Paranthropus) robustus, A. (P.) boisei, and early Homo. In addition to intertaxon comparisons, we compared data that had been collected independently by two of the authors using methods that differ slightly in technique of measurement. Interobserver differences were evaluated by the t-test of paired comparisons, method error statistic, percent differences, and principal component analysis. Results suggest that between-technique error of measurement of overall crown area is small. Error estimates for individual cusp area measurements were of larger relative magnitude. However, these were not sufficient to detract from the conclusions derived from comparative analyses. Our results are in general agreement with previous assessments of early hominid dental size. Crown areas of A. africanus, however, exhibit a mosaic pattern, with M1 similar in size to that of A. afarensis and early Homo, and M2 and M3 similar in size to that of A. robustus. Intertaxon comparisons of relative cusp area were undertaken by univariate statistics and principal component analysis. These analyses revealed that while A. (P.) robustus and A. (P.) boisei both possess mandibular molars with cusp proportions significantly different from the ‘non-robust’ taxa, these differences are substantially greater in A. (P.) boisei. © 1994 Wiley-Liss, Inc.  相似文献   

4.
5.
A fragment of mandible and a maxillary incisor of different individuals from the Longgupo Cave, China have been cited as evidence of an early dispersal ofHomo from Africa to Asia. More specifically, these specimens are said to resemble “Homo ergaster” orHomo habilis, rather than the species usually thought to be the first Asian colonizer,Homo erectus. If this supposition is correct, it calls into question which hominid (sensu stricto) first left Africa, and why hominids became a colonizing species. Furthermore, the Longgupo remains have been used to buttress the argument thatHomo erectus evolved uniquely in Asia and was not involved in the origins of modern humans. We question this whole line of argument because the mandibular fragment cannot be distinguished from penecontemporary fossil apes, especially the Late Miocene-Pliocene Chinese genusLufengpithecus, while the incisor is indistinguishable from those of recent and living east Asian people and may be intrusive in the deposit. We believe that the Longgupo mandible represents the relic survival of a Late Miocene ape lineage into a period just prior to the dispersal of hominids into southeastern Asia, with some female dental features that parallel the hominid condition. If the Longgupo mandibular fragment represents a member of theLufengpithecus clade, it demonstrates that hominoids other thanGigantopithecus and the direct ancestor of the orangutan persisted in east Asia into the Late Pliocene, while all other Eurasian large-bodied hominoids disappeared in the Late Miocene.  相似文献   

6.
Quantification of individual crown features allows maximization of information retrieval from isolated hominid molars. The Lukeino specimen demonstrates phenetic affinity to Pan; the Lothagam fossil appears closer to a hypothetical ancestral hominid morphotype than the Laetolil specimens. Consideration of 41 metric features in a cladistic framework establishes Australopithecus afarensis as the sister taxon of Homo and of later australopithecines.  相似文献   

7.
Recently recovered hominid postcrania from Member 1, Swartkrans Formation include the proximal and distal ends of a right radius attributed to a single individual of Paranthropus robustus. These fossils are essentially similar to Australopithecus afarensis, A. africanus, and P. boisei homologues. The head manifests an ape-like circumferentia articularis, and the distal end has prominent medial, dorsal, and lateral tubercles and a well developed brachioradialis crest, features also commonly exhibited by extant great apes. The volar set of the P. robustus radiocarpal joint, like that of Australopithecus homologues, more closely resembles the neutral condition exhibited by Homo than the greater flexion evinced by living apes. Compared with fossil and recent specimens of Homo, the configuration of the P. robustus radial head suggests enhanced stability against medial displacement during pronation and supination; the strong crest for the attachment of brachioradialis may attest to enhanced forearm flexor capability. In addition, this crest and the prominent dorsal tubercles may indicate enhanced hand extensor and, therefore, hand flexor capabilities. The differences in radial morphology between Paranthropus and Homo may relate to significant behavioral differences between these two synchronic taxa.  相似文献   

8.
We reanalyze a hominid talus and calcaneus from Omo dating to 2.2 mya and 2.36 mya, respectively. Although both specimens occur at different localities and times, both tarsals articulate well together, suggesting a single taxon on the basis of size and function. We attribute these foot bones to early Homo on the basis of their morphology. The more modern-like tarsal morphology of these Omo foot bones makes them very similar to a talus from Koobi Fora (KNM-ER 813), a specimen attributed to Homo rudolfensis or Homo erectus. Although the Omo tarsals are a million years younger than the oldest known foot bones from Hadar, both localities demonstrate anatomical differences representing two distinct morphological patterns. Although all known hominid tarsals demonstrate clear bipedal features, the tarsal features noted below suggest that biomechanical changes did occur over time, and that certain features are associated with different hominid lineages (especially the robust australopithecines).  相似文献   

9.
Cognitive abilities and techno-economic behaviours of hominids in the time period between 2.6-2.3 Myr have become increasingly well-documented. This time period corresponds to the oldest evidence for stone tools at Gona (Kada Gona, West Gona, EG 10-12, OGS 6-7), Hadar (AL 666), lower Omo valley (Ftji1, 2 & 5, Omo 57, Omo 123) in Ethiopia, and West Turkana (Lokalalei sites -LA1 & LA2C-) in Kenya. In 2002 a new palaeoanthropological site (LA1alpha), 100 meters south of the LA1 archaeological site, produced a first right lower molar of a juvenile hominid (KNM-WT 42718). The relative small size of the crown, its marked MD elongation and BL reduction, the relative position of the cusps, the lack of a C6 and the mild expression of a protostylid, reinforced by metrical analyses, demonstrate the distinctiveness of this tooth compared with Australopithecus afarensis, A. anamensis, A. africanus and Paranthropus boisei, and its similarity to early Homo. The LA1alpha site lies 2.2 m above the Ekalalei Tuff which is slightly younger than Tuff F dated to 2.34+/-0.04 Myr. This juvenile specimen represents the oldest occurrence of the genus Homo in West Turkana.  相似文献   

10.
The discovery (in 1971) of a nearly complete right ulna from the Shungura Formation of the Omo basin provides the opportunity to analyze the forelimb structure of the Australopithecus boisei form of early hominid. Results from multivariate morphometric analyses show that this bone is unique in shape among the extant hominoids although it is most similar to Pan and Homo. Despite its long slender shaft and large distal articular surface the bone's overall morphology is quite unlike Pongo.  相似文献   

11.
A fragmentary hominid cranium with teeth, specimen L.894-1, dating from 1.84 m.y. BP in the Shungura Formation at Omo, is described. From its dental and cranial morphology and because of similarities to Olduvai Hominids 24 and 13 and Sangiran 4, among others, it is concluded that the specimen represents a member of an early species of the genus Homo (Homo habilis or Homo modjokertensis). The specimen shows approximal grooving on the premolars, pre-mortem chipping of the molar enamel, foramina ovale and spinosum divided by the sphenosquamosal suture, limited pneumatization of the mastoid region, and a possible interparietal bone. Sedimentological, ostracod, pollen, macrofloral, and taphonomic data indicate that the paleo-environmental context was a savanna/grassland or savanna woodland on the margin of a saline lake.  相似文献   

12.
This study aims to reassess the claim that the eruption sequence of the permanent incisor and first permanent molar teeth of Australopithecus (Paranthropus) robustus is identical with that in modern Homo sapiens. Eight fossil hominid mandibles of equivalent dental developmental age were chosen for comparative study. Emphasis has been placed upon the comparative timing of events within the growth period rather than eruption sequence alone. The results of this study indicate that Homo sapiens and Australopithecus (Paranthropus) robustus share the same pattern of permanent molar and incisor eruption and that this is significantly different from the pattern of eruption shared by the great apes, Australopithecus africanus and Australopithecus afarensis.  相似文献   

13.
Kennedy (1983) has proposed that the KNM-ER 1481A femur represents Homo erectus and establishes the presence of this species at ca. 2.0.myr BP. A reconsideration of her criteria for taxonomic attribution indicates that its morphology implies only that it is an archaic member of the genus Homo. Its geochronological position, in conjunction with its morphology, suggest that it is best referred to H. habilis.  相似文献   

14.
Asterionic sutural patterns in Plio-Pleistocene hominid crania have never been examined in detail. We present an analysis of this anatomical region in Australopithecus and Homo and relate different sutural patterns to functional changes in the masticatory apparatus. The great apes and A. afarensis share the common adult higher primate sutural pattern referred to as the "asterionic notch," which develops in response to the hypertrophy of posterior temporalis muscle fibers and the consequent formation of compound temporal/nuchal crests. This sutural configuration also appears to be present on the early Homo cranium KNM-ER 1805. In contrast, adult male A. boisei crania exhibit a unique pattern where the temporal squama overlaps the parietal which, in turn, overlaps the par mastoidea and the upper scale of the occipital bone. We relate this arrangement to the need to reinforce the rear of a thin-walled braincase against the net tensile forces exerted by the temporalis and nuchal muscles. The common juvenile hominoid edge-to-edge asterionic articulation is maintained in adult A. africanus, A. robustus, female A. boisei, and most Homo crania. We discuss the latter pattern in regard to anterior temporalis hypertrophy in A. africanus, A. robustus, and A. boisei and to craniofacial paedomorphosis in Homo.  相似文献   

15.
Human evolution     
The common ancestor of modern humans and the great apes is estimated to have lived between 5 and 8 Myrs ago, but the earliest evidence in the human, or hominid, fossil record is Ardipithecus ramidus, from a 4.5 Myr Ethiopian site. This genus was succeeded by Australopithecus, within which four species are presently recognised. All combine a relatively primitive postcranial skeleton, a dentition with expanded chewing teeth and a small brain. The most primitive species in our own genus, Homo habilis and Homo rudolfensis, are little advanced over the australopithecines and with hindsight their inclusion in Homo may not be appropriate. The first species to share a substantial number of features with later Homo is Homo ergaster, or ‘early African Homo erectus’, which appears in the fossil record around 2.0 Myr. Outside Africa, fossil hominids appear as Homo erectus-like hominids, in mainland Asia and in Indonesia close to 2 Myr ago; the earliest good evidence of ‘archaic Homo’ in Europe is dated at between 600–700 Kyr before the present. Anatomically modern human, or Homo sapiens, fossils are seen first in the fossil record in Africa around 150 Kyr ago. Taken together with molecular evidence on the extent of DNA variation, this suggests that the transition from ‘archiac’ to ‘modern’ Homo may have taken place in Africa.  相似文献   

16.
Early hominid brain evolution: a new look at old endocasts   总被引:4,自引:0,他引:4  
Early hominid brain morphology is reassessed from endocasts of Australopithecus africanus and three species of Paranthropus, and new endocast reconstructions and cranial capacities are reported for four key specimens from the Paranthropus clade. The brain morphology of Australopithecus africanus appears more human like than that of Paranthropus in terms of overall frontal and temporal lobe shape. These new data do not support the proposal that increased encephalization is a shared feature between Paranthropus and early Homo. Our findings are consistent with the hypothesis that Australopithecus africanus could have been ancestral to Homo, and have implications for assessing the tempo and mode of early hominid neurological and cognitive evolution.  相似文献   

17.
Three new fossil hominid specimens that were recovered in 1970 from the Plio-Pleistocene sediments to the east of Lake Rudolf are described. They include the left side of the body and the symphyseal region of an adult mandible that contains three molar teeth (KNM-ER 730), an edentulous left-sided mandibular fragment (KNM-ER 731) and the shaft of a left femur (KNM-ER 737). The specimens are described in anatomical detail, illustrated and selected measurements given. It is concluded that they should be attributed to the genus Homo sp. indet. Detailed comparative studies will be published in due course.  相似文献   

18.
D. E. Tyler 《Human Evolution》2003,18(3-4):229-241
There are now eleven known mandibular remains from the Lower and Middle Pleistocene of Java, all but one being from the Sangiran site. All of these have been assigned toHomo erectus by most workers, while others have suggested as many as four different hominoid taxa. The author finds that the jaws cannot be a homogeneous sample. Morphologically, they are a mixture of undoubtedH. erectus, “H. meganthropus,” and possibly a pongid. If the jaws are allH. erectus then they have a sexual dimorphism exceeding that of modern gorillas. The case of“Pithecanthropus dubius” (Sangiran 5) is even less certain; even its hominid status is disputed. If it is indeedHomo it must be placed with the other“H. meganthropus” specimens. Its size and morphology are well beyond the known range anyH. erectus.  相似文献   

19.
The human cranium recovered at Florisbad in 1932 is compared with other Sub-Saharan African hominid remains from Broken Hill, the Omo and Klasies River Mouth. The Florisbad frontal is very broad, but despite this breadth and differences in zygomatic form, there is a definite resemblance to archaic Homo sapiens from Broken Hill. There is also some similarity to both Omo I and Omo II, while fragmentary remains from Klasies River are more lightly built and hence more modern in appearance. These impressions are strengthened by measurement and statistical analysis, which demonstrates that Florisbad and Broken Hill are distant from recent African populations. Even if Florisbad is less archaic than the earlier (Middle Pleistocene?) hominid, it is not noticeably Bushman-like. New dates suggestive of early Upper Pleistocene antiquity also place Florisbad securely in a lineage containing Broken Hill, and there is no evidence to support special ties with any one group of living Africans.  相似文献   

20.
The relationship between breadth and height of the mandibular corpus has been investigated in a sample of 77 hominid mandibles. An interspecific allometric increase in robusticity with size occurs between four taxonomic subgroups of Australopithecus, but subgroups of Homo vary in robusticity while differing little in size. Within taxonomic subgroups, variation in breadth is not significantly related to variation in height among the “gracile” australapithecines; however, it is isometrically related to height in the “robust” australopithecines and bears an allometric relationship to height in Homo. Thus, robusticity, in conjunction with size, may provide a useful indicator of the taxonomic affinities of hominid mandibles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号