首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compact bone distribution and biomechanics of early hominid mandibles.   总被引:1,自引:0,他引:1  
This investigation explores the effects of compact bone distribution on the biomechanical properties of the postcanine mandibular corpus of the fossil hominid taxa Australopithecus africanus and Paranthropus robustus. The mandibles of extant great apes, modern humans, and the fossil hominids are examined by computed tomography (CT), and compact bone contours are used to calculate cross-sectional biomechanical properties (cortical area, second moments of area, and Bredt's formula for torsional strength). The relative amount of compact bone is comparable in the modern and fossil mandibles, but the mechanical properties of A. africanus and P. robustus jaws are distinct in terms of the ratio of minimum to maximum second moments of area. This difference most likely represents a structural response to elevated torsional moments in the fossil hominids. Although the relative amount of compact bone in cross-section does not differ significantly between taxa by statistical criteria, A. africanus utilizes less cortical bone than P. robustus in the same manner in which Pongo is separated from the condition in other extant large-bodied hominoids. It has been suggested that the phenomenon of mandibular "robusticity" (expressed as an index of corpus breadth/corpus height) may be an effect of postcanine megadontia and/or reduced canine size in the australopithecines. Results presented here, however, indicate that it is unlikely that either factor adequately accounts for mandibular size and shape variation in early hominids.  相似文献   

2.
The influence of hard-object feeding on the size and shape of the mandibular corpus was investigated through a comparative biomechanical analysis of the jaws of adult femaleCebus apella andCebus capucinus. Computed tomography (CT) was used to discern the amount and distribution of cortical bone at M2 and symphyseal cross sections. From these data, the biomechanical properties of the mandibular corpus were determined to assess the structural rigidity of the jaw with respect to the bending, torsional, and shear stresses that occur during mastication and incision. The mandibles ofC. apella are demonstrably more robust than those ofC. capucinus in terms of biomechanical rigidity; differences in corporeal size rather than shape largely account for the enhanced robusticity in the sample ofC. apella. The differences that separate the two taxa probably represent a structural response to the mechanical demands of durophagy inC. apella. These observations suggest that specialization on a diet of hard objects may be expected to result in an overall hypertrophy of bony contours throughout the mandibular corpus.  相似文献   

3.
Long periods of inactivity in most mammals result in bone loss that may not be completely recoverable during an individual's lifetime regardless of future activity. Prolonged inactivity is normal during hibernation, but it remains uncertain whether hibernating mammals suffer decreased bone properties after hibernation that affects survival. We test the hypothesis that relative cortical area (CA), apparent density, bone area fraction (B.Ar/T.Ar), and moments of inertia do not differ between museum samples of woodchucks (Marmota monax) collected before and after hibernation. We used peripheral quantitative computed tomography to examine bone geometry in the femur, tibia, humerus and mandible. We see little evidence for changes in bone measures with hibernation supporting our hypothesis. In fact, when including subadults to increase sample sizes and controlling age statistically, we observed a trend toward increased bone properties following hibernation. Diaphyses were significantly denser in the humerus, femur, and tibia after hibernation, and relative mandibular cortical area was significantly larger. Similarly, relative mechanical indices were significantly larger in the mandible after hibernation. Although tests of individual measures in many cases were not significantly different prehibernation versus posthibernation, the overall pattern of average increase posthibernation was significant for relative CA and densities as well as relative diaphyseal mechanical indices when examining outcomes collectively. The exception to this pattern was a reduction in metaphyseal trabecular bone following hibernation. Individually, only humeral B.Ar/T.Ar was significantly reduced, but the average reduction in trabecular measures post‐hibernation was significant when examined collectively. Because the sample included subadults, we suggest that much of the increased bone relates to their continued growth during hibernation. Our results indicate that woodchucks are more similar to large hibernators that maintain skeletal integrity compared to smaller‐bodied hibernators that may lose bone. This result suggests a potential size‐related trend in bone response to hibernation across mammals. J. Morphol., 2012. © 2012Wiley Periodicals, Inc.  相似文献   

4.
The Lothagam mandibular fragment, found in 1967 west of Lake Turkana, Kenya, has been dated to 5.5 million years ago. This date is significant because it may lie within the suggested time range during which the hominid and pongid clades diverged. Because of its fragmentary condition and great age, this specimen has run the gamut of taxonomic assignations, from ramapithecine to pongid to hominid. These three nomenclatural categories serve as the basis for three hypotheses tested in this study. First, morphological and metric comparisons between Lothagam and a sample of Euroafrican ramapithecines address the hypothesis of “Lothagam as predi-vergence hominoid.” Second, comparisons with a sample of Pan test the “Lothagam as postdivergence, African protopongid” hypothesis. Finally, samples of Australopithecus afarensis and A. africanus were utilized to evaluate the hypothesis of “Lothagam as postdivergence, early hominid.” Unlike previous studies attempting to ascertain the evolutionary affinities of this enigmatic fossil, this work benefits from the large sample of A. afarensis specimens now generally available for study. Metric and morphological comparisons demonstrate Lothagam's affinity to A. afarensis in sharing derived, hominid states in such features as the mental foramen vertical position, the ascending ramus origin, the breadth of the alveolar margin, the reduction of the hypoconulid, the dimensions of the M1 and the dimensions of the mandibular corpus. It is suggested that the dental/gnathic features enumerated in this study can be employed to distinguish ancestral hominid from pongid in future Mio/Pliocene paleontological discoveries.  相似文献   

5.
Elastic modulus of bone from the anterior mandibular corpus was determined via microindentation in a mixed-sex ontogenetic sample (N = 14) of Macaca fascicularis. This investigation focused on the hypothesis that material heterogeneity in the macaque mandibular symphysis—provided an accounting of age and sex variation—is explicable as a means to homogenize strains in this region. Experimental data and theoretical models of masticatory loading indicate that in the absence of material compensation, large strain gradients exist in the anterior mandibular corpus of macaques, particularly between lingual and labial cortical plates owing to the effects of lateral transverse bending. Microindentation data indicate that juvenile macaques possess less stiff bone than their subadult and adult counterparts; however, sex differences in elastic modulus are not apparent. Anisotropy variation is idiosyncratic; that is, there is not a common pattern of variation in stiffness sampled among orthogonal planes across individuals. Similarly, differences in stiffness between lingual and labial cortical plates, as well as differences among alveolar, midcorpus, and basal regions are inconsistently observed. Consequently, we find little evidence in support of the hypothesis that spatial variation in bone stiffness functions to homogenize strains in the anterior corpus; in fact, in some individuals, this spatial variation serves to exacerbate, rather than to minimize, strain gradients. The mechanical benefit of elastic modulus variation in the macaque mandibular symphysis is unclear; this variation may not confer adaptive benefit in terms of structural integrity despite the fact that such variation has discernible functional consequences. Am J Phys Anthropol 156:649–660, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Australopithecus robustus has a distinct mandibular anatomy, with a broad and deep corpus and a tall, relatively upright ramus. How this anatomy arose through development is unknown, as gross mandibular size and shape change have not been thoroughly examined quantitatively in this species. Herein, I investigate A. robustus mandibular growth by comparing its ontogenetic series with a sample of recent humans, examining age‐related size variation in 28 linear measurements. Resampling is used to compare the amount of proportional size change occurring between tooth eruption stages in the small and fragmentary A. robustus sample, with that of a more complete human skeletal population. Ontogenetic allometry of corpus robusticity is also assessed with least squares regression. Results show that nearly all measurements experience greater average increase in A. robustus than in humans. Most notably, A. robustus corpus breadth undergoes a spurt of growth before eruption of M1, likely due in part to delayed resorption of the ramus root on the lateral corpus. Between the occlusion of M1 and M2, nearly all dimensions experience greater proportional size change in A. robustus. Nested resampling analysis affirms that this pattern of growth differences between species is biologically significant, and not a mere byproduct of the fossil sample size. Some species differences are likely a function of postcanine megadontia in A. robustus, although the causes of other differences are less clear. This study demonstrates an important role of the postnatal period for mandibular shape development in this species. Am J Phys Anthropol 154:436–446, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The age distributions for the two australopithecine types are examined and found to differ significantly as does the difference in average age at death: 22.9 years for Australopithecus africanus and 18.0 years for Australopithecus robustus. Survivorship curves for the two types are constructed. In addition, the survivorship curve for the australopithecine sample is compared to one group of pre-urban Homo sapiens and found to be much the same, if it is assumed the young australopithecines are not adequately represented. A proposed birth model is presented and it is concluded that both australopithecine types followed a human model of reproduction.  相似文献   

8.
The taxonPraeanthropus africanus (Weinert, 1950), represented by the Garusi maxilla, is valid and reinstated. The morphological pattern of the Garusi maxilla is not that of a primitive hominid, but of a relatively generalized pongid. Since the apelike lectotype L.H.-4 and paralectotype A.L.200-1a ofAustralopithecus afarensis Johanson et al. 1978 are conspecific withP. africanus, and originate from the same formation, they are reassigned toPraeanthropus africanus.  相似文献   

9.
The functional restoration of the occlusal relationship between maxillary and mandibular tooth rows is a major challenge in modern dentistry and maxillofacial surgery. Similar technical challenges are present in paleoanthropology when considering fragmented and deformed mandibular and maxillary fossils. Sts 52, an Australopithecus africanus specimen from Sterkfontein Member 4, represents a typical case where the original shape of the dental arches is no longer preserved. It includes a partial lower face (Sts 52a) and a fragmented mandible (Sts 52b), both incomplete and damaged to such an extent to thwart attempts at matching upper and lower dentitions. We show how the preserved macrowear pattern of the tooth crowns can be used to functionally reconstruct Sts 52's dental arches. High‐resolutiondental stone casts of Sts 52 maxillary and mandibular dentition were mounted and repositioned in a dental articulator. The occlusal relationship between antagonists was restored based on the analysis of the occlusal wear pattern of each preserved tooth, considering all dental contact movements represented in the occlusal compass. The reconstructed dental arches were three‐dimensional surface scanned and their occlusal kinematics tested in a simulation. The outcome of this contribution is the first functional restoration of A. africanus dental arches providing new morphometric data for specimen Sts 52. It is noteworthy that the method described in this case study might be applied to several other fossilspecimens. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Recent morphometric analyses have led to dissimilar conclusions about whether the jaws of tree-gouging primates are designed to resist the purportedly large forces generated during this biting behavior. We further address this question by comparing the cross-sectional geometry of the mandibular corpus and symphysis in tree-gouging common marmosets (Callithrix jacchus) to nongouging saddleback tamarins (Saguinus fuscicollis) and squirrel monkeys (Saimiri sciureus). As might be expected, based on size, squirrel monkeys tend to have absolutely larger cross-sectional areas at each tooth location sampled, while saddleback tamarins are intermediate, followed by the smaller common marmosets. Similarly, the amount and distribution of cortical bone in squirrel monkey jaws provides them with increased ability to resist sagittal bending (I xx ) and torsion (K) in the corpus as well as coronal bending (I xx ) and shearing in the symphysis. However, when the biomechanical parameters are scaled to respective load arm estimates, there are few significant differences in relative resistance abilities among the 3 species. A power analysis indicates that we cannot statistically rule out subtle changes in marmoset jaw form linked to resisting loads during gouging. Nevertheless, our results correspond to studies in vivo of jaw loading, field data, and other comparative analyses suggesting that common marmosets do not generate relatively large bite forces during tree gouging. The 3 species are like most other anthropoids in having thinner bone on the lingual than on the buccal side of the mandibular corpus at M1. The similarity in corporal shape across anthropoids supports a hypothesized stereotypical pattern of jaw loading during chewing and may indicate a conserved pattern of mandibular growth for the suborder. Despite the overall similarity, platyrrhines may differ slightly from catarrhines in the details of their cortical bone distribution.
Christopher J. VinyardEmail:
  相似文献   

11.
The fossil remains of Australopithecus africanus attest to the widespread practice of homicide and cannibalism. Among living carnivores and primates, the only species to exhibit both cannibalism and intraspecific killing on this scale are Canis lupes, Crocuta crocuta, and Panthera leo. These species share a common diet and a multi-male, territorial group social structure. They probably also shared that with A. africanus. Contemporary primitive societies have more vegetal matter in their diets than these social carnivores but they exhibit similar behavior. This suggests that sometime in the recent past they had more meat in their diets.  相似文献   

12.
Cortical bone distribution of the anthropoid mandibular symphysis has been addressed in relation to mechanical stress generated by mastication. To examine whether or not bone mass and distribution patterns of the human mandibular symphysis could be interpreted as an example of functional adaptation, we compared the skeletal growth series of two populations, prehistoric Jomon, considered to represent a "robust" mandibular morphology associated with a presumed heavier masticatory load, and modern Japanese. Results showed that the adult Jomon symphysis possessed significantly greater bone mass and thicker cortical bone compared to the modern Japanese condition. However, the second moments of area did not differ significantly between the two, indicating comparable rigidity against bending. Furthermore, the Jomon mandibles of the infant to juvenile stages exhibited most of the adult characteristics, in both bone mass/distribution of the symphysis and in mandibular corpus/ramus morphologies. The present study also demonstrated the presence of a growth pattern of symphyseal cortical thickness, common to both the Jomon and the modern Japanese series. In both populations, subsequent to deciduous molar occlusion, cortical bone tends to be thickest at the inferolingual symphysis, at the location where the highest tensile stresses presumably occur during mastication. These findings suggest that the "robust" characteristics of the Jomon mandible are initially manifested early in development, and that the effect of mechanical stimulus to bone mass formation in the human symphysis is largely confined to a regulatory role during growth modeling.  相似文献   

13.
Dental development stages of six immature Australopithecus robustus individuals from Swarktrans (SK 61, SK 62, SK 63, SK 64, SK 438, SK 3978) and seven immature Australopithecus africanus individuals from Taung, Sterkfontein, and Makapans (Taung 1, Sts 2, Sts 8, Sts 18, Sts 24, Stw 327, MLD 2) are described. These stages were assessed using the system devised by Demirjian and colleagues and were based on a data set comprising over 350 computed tomographic (CT) scans taken at 1 and 2 mm slice intervals. It is concluded that patterns of dental development may have differed between A. robustus and A. africanus even though the chronology of development (i.e., the length of time for dental development to occur) may have proceeded relatively rapidly in both species. These data provide unique information regarding the timing and pattern of dental maturation in austral-opithecines and can be used to compare and contrast developmental patterns among early hominids, modern humans, and nonhuman primates.  相似文献   

14.
Investigations seeking to understand the relationship between mandibular form, function, and dietary behavior have focused on the mandibular corpus and symphysis. African apes vary along a gradient of folivory/frugivory, yet few studies have evaluated the morphology of the mandibular corpus and symphysis in these taxa, and the investigations have yielded mixed results. Specifically, studies using external metrics have identified differences in mandibular proportions that analysis of cortical bone distribution has not substantiated. I contribute to the ongoing debate on the relationship between jaw form and dietary behavior by comparing mandibular corporal and symphyseal shapes in African apes. Importantly, and in contrast to previous studies of African ape internal geometry, I include the Virunga mountain gorillas (Gorilla beringei beringei), the ape most specialized toward a folivorous diet. I test the hypotheses that 1) Gorilla beringei beringei always has significantly more robust mandibular corpora and symphyses, relative to mandibular length, than all other African apes and 2) all gorillas have significantly more robust mandibular corpora and symphyses, relative to mandibular length, than Pan. Results demonstrate that the folivorous mountain gorillas consistently exhibit a relatively wider mandibular symphysis and corpus than all other African apes. Furthermore, all gorillas consistently exhibit relatively more robust mandibular corporal and symphyseal dimensions than Pan. The results indicate that among African apes, mountain gorillas are better able to counter lateral transverse bending (wishboning) loads at the symphysis and torsional loads at the corpus. All gorillas are likewise better able to resist wishboning and vertical bending at the symphysis, and sagittal bending and torsion at the corpus, than Pan, findings that are consistent with masticating relatively tougher foods, repetitive loading of the jaws, or both. I offer possible explanations for the lack of concordance in results between studies that have analyzed the biomechanical properties of African ape mandibles and others that have relied on external metrics. More comprehensive study of the internal geometry of the mandible is needed to resolve whether African apes differ morphologically in ways predicted by dietary variation.
Andrea B. TaylorEmail:
  相似文献   

15.
The crescent of foramina of the cerebral surface of the sphenoid bone (superior orbital fissure, foramen rotundum, foramen ovale, foramen spinosum) differs morphologically in the African great apes and modern humans. New discoveries of Australopithecus afarensis at Hadar, Ethiopia, draw attention to the similarity of the crescent, particularly the “foramen” shape of the superior orbital fissure and its close proximity to the foramen rotundum, in this species, the African apes, and many other primates. Australopithecus africanus also shows this primitive pattern, whereas “robust” australopiths and humans share a configuration in which a true, laterally extended superior orbital fissure intervenes between the greater and lesser wings of the sphenoid and a broad bridge of bone separates the fissure from the foramen rotundum. This shared morphology may be added to the list of putative “robust” australopith-Homo synapomorphies. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Impacted third molars affect 15%–20% of modern Americans and Western Europeans. In contrast, third molar impactions have not been reported in the early hominid fossil record. It is uncertain whether the lack of reports reflects an absence of impactions or a failure to recognize them. This communication is intended to raise awareness of the possibility of impactions by describing the appearance of impacted teeth and by noting two possible instances of impaction in early hominids. Specifically, the mandibular third molars of the Sterkfontein specimen, STS52b (Australopithecus africanus), and the left maxillary third molar of the Lake Turkana specimen, KNM-WT17400 (Australopithecus boisei), are positioned in a manner which suggests that they would not have erupted normally. Both specimens also exhibit strong crowding of the anterior dentition, providing further support for the view that these individuals lacked sufficient space for normal eruption of the third molars. Other published reports of dental crowding in the hominid fossil record are noted, and it is suggested that more attention be paid to dental impaction and dental crowding in hominid evolution. © 1993 Wiley-Liss, Inc.  相似文献   

17.
18.
Recently discovered crania of Australopithecus africanus from Sterkfontein Member 4 and Makapansgat enlarge the size range of the species and encourage a reappraisal of both the degree and pattern of sexual dimorphism. Resampling methodology (bootstrapping) is used here to establish that A. africanus has a greater craniofacial size range than chimpanzees or modern humans, a range which is best attributed to a moderately high degree of sexual dimorphism. Compared to other fossil hominins, this variation is similar to that of Homo habilis (sensu lato) but less than that of A. boisei. The finding of moderately high dimorphism is corroborated by a CV-based estimate and ratios between those specimens considered to be male and those considered to be female. Inferences about the pattern of craniofacial dimorphism in the A. africanus face currently rely on the relationship of morphology and size. Larger specimens, particularly Stw 505, show prominent superciliary eminences and glabellar regions, but in features related in part to canine size, such as the curvature of the infraorbital surface, large and small specimens of A. africanus are similar. In this respect, the pattern resembles that of modern humans more so than chimpanzees or lowland gorillas. A. africanus may also show novel patterns of sexual dimorphism when compared to extant hominines, such as in the form of the anterior pillar. However, males of the species do not exhibit characteristics of more derived hominins, such as A. robustus. Am J Phys Anthropol 108:97–127, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well‐established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons. Am J Phys Anthropol 153:387–396, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Material properties and their variations in individual bone organs are important for understanding bone adaptation and quality at a tissue level, and are essential for accurate mechanical models. Yet material property variations have received little systematic study. Like all other material property studies in individual bone organs, studies of the human mandible are limited by a low number of both specimens and sampled regions. The aims of this study were to determine: 1) regional variability in mandibular material properties, 2) the effect of this variability on the modeling of mandibular function, and 3) the relationship of this variability to mandibular structure and function. We removed 31 samples on both facial and lingual cortices of 10 fresh adult dentate mandibles, measured cortical thickness and density, determined the directions of maximum stiffness with a pulse transmission ultrasonic technique, and calculated elastic properties from measured ultrasonic velocities. Results showed that each of these elastic properties in the dentate human mandible demonstrates unique regional variation. The direction of maximum stiffness was near parallel to the occlusal plane within the corpus. On the facial ramus, the direction of maximum stiffness was more vertically oriented. Several sites in the mandible did not show a consistent direction of maximum stiffness among specimens, although all specimens exhibited significant orthotropy. Mandibular cortical thickness varied significantly (P < 0.001) between sites, and decreased from 3.7 mm (SD = 0.9) anteriorly to 1.4 mm posteriorly (SD = 0.1). The cortical plate was also significantly thicker (P < 0.003) on the facial side than on the lingual side. Bone was 50-100% stiffer in the longitudinal direction (E(3), 20-30 GPa) than in the circumferential or tangential directions (E(2) or E(1); P < 0.001). The results suggest that material properties and directional variations have an important impact on mandibular mechanics. The accuracy of stresses calculated from strains and average material properties varies regionally, depending on variations in the direction of maximum stiffness and anisotropy. Stresses in some parts of the mandible can be more accurately calculated than in other regions. Limited evidence suggests that the orientations and anisotropies of cortical elastic properties correspond with features of cortical bone microstructure, although the relationship with functional stresses and strains is not clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号