首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many studies reported benefits of whole-body vibration (WBV) on muscle force production. Therefore, WBV may be an important technique for muscle re-education. However vibrating platforms are heavy tools that cannot be easily used by all patients. Thus, we propose to apply vibrations directly to the Achilles tendon at rest with a portable vibrator. We investigated whether 14 days of such a vibration program would enhance triceps surae force production in healthy subjects. If successful, such a protocol could be utilized to prevent deleterious effects of hypo-activity. Twenty-nine healthy students participated in this study. The electrical evoked twitch and maximal voluntary contraction (MVC) in plantar-flexion, and electromyograms (EMG) were quantified before and at the end of the program. The vibration program consisted of 14 days of daily vibration applied at rest (duration: 1 h; frequency: 50 Hz). After the program, there was an increase in MVC associated with greater EMG of the TS. No sign of hypertrophy were found on the twitch parameters and the EMG–torque relationships. Repeated vibrations of the Achilles tendon lead to an increase in plantar-flexor activation and thus to greater force developed in voluntary conditions whilst the contractile properties assessed by the twitch are not modified. This program could be beneficial to persons with hypo-activity who are not candidates for WBV.  相似文献   

2.
A model of the human triceps surae muscle-tendon complex applied to jumping   总被引:1,自引:0,他引:1  
The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m. soleus and m. gastrocnemius. A model was developed of m. triceps surae, incorporating assumptions concerning dimensions, architecture, force-length and force-velocity relationships of muscle fibers, as well as assumptions concerning dimensions and elastic behavior of tendinous tissue in series with the muscle fibers. The velocity with which origin approaches insertion (V OI) was calculated for m. soleus and m. gastrocnemius using cine film data, and served as input of the model. During the last part of the push-off phase EMG-levels were found to be more or less constant, V OI of m. soleus and m. gastrocnemius rapidly increased, and the plantar flexing moment obtained by solving equations concerning a free body diagram of the foot rapidly declined. A similar decline was observed in the plantar flexing moment obtained by multiplying force calculated with help of the model by estimated moment arm at the ankle. As a result of the decline of exerted force tendon length decreases. According to the model the shortening velocity of tendon reaches higher values than that of muscle fibers. The results of a kinetic analysis demonstrate that during the last part of the push-off phase a combination of high angular velocities with relatively large plantar flexing moments is required. It is concluded that without a compliant tendon m. triceps surae would not be able to satisfy this requirement.  相似文献   

3.
Architecturalproperties of the triceps surae muscles were determined in vivo for sixmen. The ankle was positioned at 15° dorsiflexion (15°)and 0, 15, and 30° plantar flexion, with the knee set at 0, 45, and90°. At each position, longitudinal ultrasonic images of the medial(MG) and lateral (LG) gastrocnemius and soleus (Sol) muscles wereobtained while the subject was relaxed (passive) and performed maximalisometric plantar flexion (active), from which fascicle lengths andangles with respect to the aponeuroses were determined. In the passivecondition, fascicle lengths changed from 59, 65, and 43 mm (knee,0°; ankle, 15°) to 32, 41, and 30 mm (knee, 90°ankle, 30°) for MG, LG, and Sol, respectively. Fascicle shorteningby contraction was more pronounced at longer fascicle lengths. MG hadgreatest fascicle angles, ranging from 22 to 67°, and was in a verydisadvantageous condition when the knee was flexed at 90°,irrespective of ankle positions. Different lengths and angles offascicles, and their changes by contraction, might be related todifferences in force-producing capabilities of the muscles and elasticcharacteristics of tendons and aponeuroses.

  相似文献   

4.
Achilles tendon (AT) compliance can affect the generation and transmission of triceps surae muscle forces, and thus has important biomechanical consequences for walking performance. However, the uniarticular soleus (SOL) and the biarticular (GAS) function differently during walking, with in vivo evidence suggesting that their associated fascicles and tendinous structures exhibit unique kinematics during walking. Given the strong association between muscle fiber length, velocity and force production, we conjectured that SOL and GAS mechanics and energetic behavior would respond differently to altered AT compliance. To test this, we characterized GAS and SOL muscle and tendon mechanics and energetics due to systematic changes in tendon compliance using musculoskeletal simulations of walking. Increased tendon compliance enlarged GAS and SOL tendon excursions, shortened fiber operation lengths and affected muscle excitation patterns. For both muscles, an optimal tendon compliance (tendon strains of approximately 5% with maximum isometric force) existed that minimized metabolic energy consumption. However, GAS muscle-tendon mechanics and energetics were significantly more sensitive to changes in tendon compliance than were those for SOL. In addition, GAS was not able to return stored tendon energy during push-off as effectively as SOL, particularly for larger values of tendon compliance. These fundamental differences between GAS and SOL sensitivity to altered tendon compliance seem to arise from the biarticular nature of GAS. These insights are potentially important for understanding the functional consequences of altered Achilles tendon compliance due to aging, injury, or disease.  相似文献   

5.
The purpose of this study was to examine the effects of aging and endurance running on the mechanical and morphological properties of different muscle-tendon units (MTUs) in vivo. The investigation was conducted on 30 elderly and 19 young adult males. For the analysis of possible MTU adaptation in response to endurance running the subjects were divided into two subgroups: non-active vs. endurance-runners. All subjects performed isometric maximal voluntary plantarflexion and knee extension contractions on a dynamometer. The distal aponeurosis of the gastrocnemius medialis (GM) and vastus lateralis (VL) during plantarflexion and knee extensions and the muscle architecture of the GM and VL were visualized by ultrasonography. The maximal knee and ankle joint moment were higher for the young compared to the elderly population (p<0.05). No identifiable differences in muscle architecture between young and elderly subjects were detected in VL and GM. Aging results in a reduced (p<0.05) normalized stiffness of the quadriceps femoris tendon and aponeurosis, which were not identifiable for the triceps surae. In contrast, the properties of both MTUs showed no major differences between endurance-runners and the non-active group (p>0.05). Only pennation angle at the GM were higher for the runners compared to the non-active group (p<0.05). The present results indicate that tendon changes related to aging do not occur proportionally in different MTUs. Furthermore, it seems that the extra stress and load imposed on high-load-bearing MTUs during endurance running may not be sufficient to produce significant adaptative processes in the mechanical parameters analyzed.  相似文献   

6.
The purposes of this study were to examine (a) whether the morphological properties of the muscle gastrocnemius medialis (GM) contribute to the known enhanced muscle fatigue resistance during submaximal sustained isometric plantar flexion contraction of old compared to young adults and (b) whether a submaximal fatiguing contraction differently affects the mechanical properties of the GM tendon and aponeurosis of old and young adults. Fourteen old and 12 young male subjects performed maximal voluntary isometric plantar flexions (MVC) on a dynamometer before and after a submaximal fatiguing task (40% MVC). Moments and EMG signals from the gastrocnemius medialis and lateralis, soleus and tibialis anterior muscles were measured. The elongation of the GM tendon and aponeurosis and the morphological properties of its contractile element were examined by means of ultrasonography. The old adults showed lower maximal ankle joint moment, stiffness and fascicle length in both tested conditions. The submaximal fatiguing contraction did not affect the force-strain relationship of the GM tendon and aponeurosis of either young or old adults. The time to task failure was longer for the old adults and was strongly correlated with the fascicle length (r(2)=0.50, P<0.001). This provides evidence on that the lower ratio of the active muscle volume to muscle force for the old adults might be an additional mechanism contributing to the known age related increase in muscle fatigue resistance.  相似文献   

7.
8.
We previously demonstrated that muscle afferent endings are sensitized by exogenous prostaglandins during static contraction of skeletal muscle. The purpose of this study was to determine whether 30 s of static hindlimb contraction, induced by electrical stimulation of the cat sciatic nerve, increases the concentration of immunoreactive prostaglandin E2 (iPGE2) and 6-ketoprostaglandin F1 alpha (i6-keto-PGF1 alpha, the stable metabolite of prostaglandin I2) in muscle tissue. In addition, the role of ischemia in augmenting prostanoid production was examined. Gastrocnemius muscle was obtained by freeze-clamping tissue, and prostaglandins were extracted from muscle homogenates and measured by radioimmunoassay. Compared with precontraction values, high-intensity (68% of maximal tension) static contraction elevated gastrocnemius iPGE2 and i6-keto-PGF1 alpha by 45 and 53%, respectively (P less than 0.01). Likewise, when blood flow to the gastrocnemius was attenuated by arterial occlusion during and 2 min before low-intensity contraction (29% maximal tension), the intramuscular iPGE2 concentration was increased by 71% (P less than 0.01). Conversely, low-intensity contraction (30% of maximal tension) and arterial occlusion without contraction did not alter the concentration of either prostanoid. Our findings demonstrate that prostaglandins accumulate in muscle during static contraction. We believe that local muscle ischemia may provide a stimulus for this phenomenon. These prostaglandins therefore are available to sensitize afferent endings responsible for reflex adjustments during static muscle contraction.  相似文献   

9.
In explosive movements involving the lower extremity elastic recoil and transportation of power from knee to ankle via m. gastrocnemius allow power output about the ankle to reach values over and above the maximum power output of the plantar flexors. The object of this study was to estimate the relative power and work contributions of these two mechanisms for the push-off phase in one-legged jumping. During jumps of ten subjects ground reaction forces and cinematographic data were recorded. The data were used for a kinematic and kinetic analysis of the jumps yielding, among other variables, the velocity with which origins of m. soleus and m. gastrocnemius approach insertion (V OI), and net power output about the ankle (P A). V OI of m. soleus and m. gastrocnemius were imposed upon a model of the muscle-tendon complex of m. triceps surae, and power contributions of muscle fibers (P fibers), tendinous structures (P tendon), and transportation (P transported) were calculated. During the last 150 ms before toe-off, P A was found to increase rapidly and to attain an average peak value of 1790 W. The curve obtained by summation of P fibers, P tendon and P transported closely resembled that of P A. On the instant that the latter peaked (50 ms before toe-off) P fibers and P tendon of m. triceps surae contributed 27 and 53% respectively, and P transported contributed 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad · s–1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad · s–1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.  相似文献   

11.
The aim of the present study was to analyze how human tendon connective tissue responds to an approximately 7-wk period of immobilization and a remobilization period of a similar length, in patients with unilateral ankle fracture, which is currently unknown. Calf muscle cross-sectional area (CSA) decreased by 15% (5,316 to 4,517 mm2) and strength by 54% (239 to 110 N.m) in the immobilized leg after 7 wk. During the 7-wk remobilization, the CSA increased by 9% (to 4,943 mm2) and strength by 37% (to 176 Nm). Achilles tendon CSA did not change significantly during either immobilization or remobilization. Local collagen turnover was measured as the peritendinous concentrations of NH2-terminal propeptide of type I collagen (PINP) and COOH-terminal telopeptide region of type I collagen (ICTP), markers thought to be indexes of type I collagen synthesis and degradation, respectively. Both markers were increased (PINP: 257 vs. 56 ng/ml; ICTP: 9.8 vs. 2.1 microg/l) in the immobilized leg compared with the control leg after the 7 wk of immobilization, and levels decreased again in the immobilized leg during the recovery period (PINP: 103 vs. 44 ng/ml; ICTP: 4.2 vs. 1.9 microg/l). A significant reduction in calf muscle CSA and strength was found in relation to 7 wk of immobilization. Immobilization increased both collagen synthesis and degradation in tendon near tissue. However, it cannot be excluded that the facture of the ankle in close proximity could have affected these data. Remobilization increased muscle size and strength and tendon synthesis and degradation decreased to baseline levels. These dynamic changes in tendon connective tissue turnover were not associated with macroscopic changes in tendon size.  相似文献   

12.
The purpose of this study was to clarify how foot deformation affects the relationship between triceps surae muscle-tendon unit (MTU) length and ankle joint angle. For six women and six men a series of sagittal magnetic resonance (MR) images of the right foot were taken, and changes in MTU length (the displacement of the calcaneal tuberosity), foot arch angle, and ankle joint angle were measured. In the passive session, each subject's ankle joint was secured at 10° dorsiflexed position, neutral position (NP), and 10° and 20° plantar flexed positions while MR images were acquired. In the active session, each subject was requested to perform submaximal isometric plantar flexions (30%, 60%, and 80% of voluntary maximum) at NP. The changes in MTU length in each trial were estimated by two different formulae reported previously. The changes of the measured MTU length as a function of ankle joint angles observed in all trials of the active session were significantly (p<0.05) larger than corresponding values in the passive session and by the estimation formulae. In the passive session, MTU length changes were significantly smaller than the estimated values when the ankle was plantar flexed. The foot arch angle increased as the contraction level increased from rest (117 ± 4°) to 80% (125 ± 3°), and decreased as the ankle was positioned further into plantar flexion in the passive session (115 ± 3°). These results indicate that foot deformation profoundly affects the triceps surae MTU length-ankle joint angle relationship during plantar flexion.  相似文献   

13.
PURPOSE: The purpose of this experiment was to evaluate the effects of both muscle length and moment arm (MA) on the electromyographic (EMG) and force output of the triceps surae (TS) muscle. RELEVANCE: It is well recognized that changes in muscle length affect both the muscle's force generating capacity as well as its twitch speed. This relationship is well established in animal preparations. Contrary to animal experiments where length can be directly manipulated in isolated muscles, human experiments require that all muscle length changes be secondary to changes in a joint angle. Such experimental manipulations therefore produce changes in not only muscle length, but also in the muscle's MA. The relative effect of muscle length and MA changes on muscle EMG has not been determined in previous experiments. METHODS: This study was executed in two phases. First, using fresh human cadaver lower limbs, data were gathered describing the relationship between knee and ankle angle changes for maintenance of a constant TS muscle length, while its MA at the ankle joint has been changed. In the second phase of the study, results obtained from phase one were applied to 10 healthy adult human subjects to measure the EMG (surface and fine wire) activity of TS at three different conditions: when both length and MA were shortened, when muscle length was decreased given a constant MA and when MA was shortened given a constant muscle length. RESULTS: A significant increase in muscle activity was found as both the length and MA of TS muscle were shortened. A similar pattern of increased muscle activity was observed when the MA was shortened given a constant muscle length. No significant change in TS activity was found when muscle length was shortened, given a constant MA at the ankle joint. CONCLUSIONS: The findings of this study indicate that changes in the Achilles tendon MA predominate over the muscle length variations in determining the level of TS activity when generating plantar flexion torque.  相似文献   

14.
The purpose of the present study was to investigate whether it is possible to predict the individual muscle volumes within the triceps surae (TS) muscle group by means of easily measurable parameters based on a theoretical consideration. A further objective was to verify the use of the available literature data to assess the contribution of each muscle of the group to the entire TS volume or physiological cross-sectional-area (PCSA). Therefore, magnetic resonance images of the right calf of 13 male subjects were acquired and each muscle of the TS was reconstructed. Muscle length (l(m)), the maximum anatomical cross-sectional-area (ACSA(max)) and muscle volume were obtained from the 3D models. To assess the PCSA, fascicle length was determined by ultrasonography. In general, muscle volume can be expressed as a fraction of the product of ACSA(max) and l(m). The size of the fraction depends on muscle shape and its coefficient of variance among the examined population was considerable low (soleus 6%, gastrocnemius 4% and gastrocnemius lateralis 7%) in the present study. The product of ACSA(max) and l(m) was, therefore, suitable to assess muscle volume (root mean squares, RMS 4-7%). Further, the soleus, gastrocnemius medialis and gastrocnemius lateralis accounted on average for about 52+/-3%, 32+/-2% and 16+/-2% of the total TS volume and 62+/-5%, 26+/-3% and 12+/-2% of the entire TS PCSA, respectively. The coefficient of variance of the relative portions were 5-10% for muscle volume and 8-17% for the PCSA.  相似文献   

15.
16.
The hypothesis that one possible cause of the spontaneous discharge of muscle spindles in the totally relaxed and de-efferented triceps surae muscle, with its tendon divided, is the mechanical factor due to extrafusal-intrafusal interaction was tested in experiments on anesthetized cats. Responses of spontaneously active units were similar with respect to many indices to responses of silent receptors capable of generating a long discharge in response to an increase in static length of the muscle. Isotonic contraction of the relaxed muscle during direct or indirect stimulation was accompanied by a pause in spontaneous activity. The prolonged increase in discharge frequency sometimes arising as a result of pressure on the muscle in the region of the receptor also was abolished by weak isotonic contraction of the muscle. If a long posttetanic sensory discharge was induced in a spontaneously active receptor by intensive tetanization of the nerve to the muscle, and it was then abolished by short stretching of the muscle, the initial spontaneous discharge frequency was restored. The dynamic thresholds of spontaneously active receptors were lower than for silent receptors. In some spontaneously active receptors an initial slowing of the discharge was observed during linear or stepwise stretching of the muscle. It is suggested that the ability of sensory endings to generate a long spontaneous discharge is due to initial stretching of the spindle inside the relaxed muscle.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 287–294, May–June, 1978.  相似文献   

17.
Two questions were addressed in this study: (1) how much strain of the superficial aponeurosis of the human medial gastrocnemius muscle (MG) was obtained during voluntary isometric contractions in vivo, (2) whether there existed inhomogeneity of the strain along the superficial aponeurosis. Seven male subjects, whose knees were extended and ankles were flexed at right angle, performed isometric plantar flexion while elongation of superficial aponeurosis of MG was determined from the movements of the intersections made by the superficial aponeurosis and fascicles using ultrasonography. The strain of the superficial aponeurosis at the maximum voluntary contraction, estimated from the elongation and length data, was 5.6+/-1.2%. There was no significant difference in strain between the proximal and distal parts of the superficial aponeurosis. Based on the present result and that of our previous study for the same subjects (J. Appl. Physiol 90 (2001) 1671), a model was formulated for a contracting uni-pennate muscle-tendon unit. This model, which could be applied to isometric contractions at other angles and therefore of wide use, showed that similar strain between superficial and deep aponeuroses of MG contributed to homogeneous fascicle length change within MG during contractions. These findings would contribute to clarifying the functions of the superficial aponeurosis and the effects of the superficial aponeurosis elongation on the whole muscle behavior.  相似文献   

18.
The rigid linked system model and principles of inverse dynamics have been widely used to calculate residual muscle moments during various activities. EMG driven models and optimization algorithms have also been presented in the literature in efforts to estimate skeletal muscle forces and evaluate their possible contribution to the residual muscle moment. Additionally, skeletal muscle-tendon forces have been measured, directly, in both animals and humans. The purpose of this investigation was to calculate the moment produced by the triceps surae muscles and compare it to the residual muscle moment at the ankle during cycling at three power outputs (90, 180 and 270 W). Inferences were made regarding the potential contribution made by each triceps surae component to the tendon force using EMG and muscle-tendon length changes. A buckle-type transducer was surgically implanted on the right Achilles tendon of one male subject. Achilles tendon forces measured in vivo were multiplied by their corresponding moment arms to yield the triceps surae moment during the three working conditions. Moment arm lengths were obtained in a separate experiment using magnetic resonance imaging (MRI). Pedal reaction forces, body segment accelerations (determined from high speed film), and appropriate mass parameters served as input to the inverse solution. The triceps surae moment was temporally in phase with and consistently represented approximately 65% of the residual muscle moment at the ankle. These data demonstrate the feasibility of using implanted transducers in human subjects and provide a greater understanding of musculoskeletal mechanics during normal human movements.  相似文献   

19.
ABSTRACT: Hébert-Losier, K, Schneiders, AG, García, JA, Sullivan, SJ, and Simoneau, GG. Influence of knee flexion angle and age on triceps surae muscle activity during heel raises. J Strength Cond Res 26(11): 3124-3133, 2012-Triceps surae and Achilles tendon injuries are frequent in sports medicine, particularly in middle-aged adults. Muscle imbalances and weakness are suggested to be involved in the etiology of these conditions, with heel-raise testing often used to assess and treat triceps surae (TS) injuries. Although heel raises are recommended with the knee straight for gastrocnemius and bent for soleus (SOL), the extent of muscle selectivity in these positions is not clear. This study aimed to determine the influence of knee angle and age on TS muscle activity during heel raises. Forty-eight healthy men and women were recruited from a younger-aged (18-25 years) and middle-aged (35-45 years) population. All the subjects performed unilateral heel raises in 0° and 45° knee flexion (KF). Soleus, gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) surface electromyography signals were processed to compute root-mean-square amplitudes, and data were analyzed using mixed-effects models and stepwise regression. The mean TS activity during heel raises was 23% of maximum voluntary isometric contraction when performed in 0° KF and 21% when in 45°. Amplitudes were significantly different between TS muscles (p < 0.001) and KF angles (p < 0.001), with a significant interaction (p < 0.001). However, the age of the population did not influence the results (p = 0.193). The findings demonstrate that SOL activity was 4% greater when tested in 45° compared with 0° KF and 5% lower in the GM and GL. The results are consistent with the recommended use of heel raises in select knee positions for assessing, training, and rehabilitating the SOL and gastrocnemius muscles; however, the 4-5% documented change in activity might not be enough to significantly influence clinical outcome measures or muscle-specific benefits. Contrary to expectations, TS activity did not distinguish between middle-aged and younger-aged adults, despite the higher injury prevalence in middle age.  相似文献   

20.
ABSTRACT: Hébert-Losier, K, Schneiders, AG, García, JA, Sullivan, SJ, and Simoneau, GG. Influence of knee flexion angle and age on triceps surae muscle fatigue during heel raises. J Strength Cond Res 26(11): 3134-3147, 2012-The triceps surae (TS) muscle-tendon unit is 1 of the most commonly injured in elite and recreational athletes, with a high prevalence in middle-aged adults. The performance of maximal numbers of unilateral heel raises is used to assess, train, and rehabilitate TS endurance and conventionally prescribed in 0° knee flexion (KF) for the gastrocnemius and 45° for the soleus (SOL). However, the extent of muscle selectivity conferred through the change in the knee angle is lacking for heel raises performed to volitional fatigue. This study investigated the influence of knee angle on TS muscle fatigue during heel raises and determined whether fatigue differed between middle-aged and younger-aged adults. Forty-eight healthy individuals aged 18-25 and 35-45 years performed maximal numbers of unilateral heel raises in 0° and 45° KF. Median frequencies and linear regression slopes were calculated from the SOL, gastrocnemius medialis (GM), and gastrocnemius lateralis (GL) surface electromyographic signals. Stepwise mixed-effect regressions were used for analysis. The subjects completed an average of 45 and 48 heel raises in 0° and 45° KF, respectively. The results indicated that the 3 muscles fatigued during testing as all median frequencies decreased, and regression slopes were negative. Consistent with muscle physiology and fiber typing, fatigue was greater in the GM and GL than in the SOL (p < 0.001). However, knee angle did not influence TS muscle fatigue parameters (p = 0.814), with similar SOL, GM, and GL fatigue in 0° and 45° KF. These findings are in contrast with the traditionally described clinical use of heel raises in select knee angles for the gastrocnemius and the SOL. Furthermore, no difference in TS fatigue between the 2 age groups was able to be determined, despite the reported higher prevalence of injury in middle-aged individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号