首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aldo-keto reductase 1B10 (AKR1B10) protein is a new tumor biomarker in humans. Our previous studies have shown that AKR1B10 is secreted through a lysosome-mediated nonclassical pathway, leading to an increase in the serum of breast cancer patients. This study illuminates the regulatory mechanism of AKR1B10 secretion. The cytosolic AKR1B10 associates with and is translocated to lysosomes by heat shock protein 90α (HSP90α), a chaperone molecule. Ectopic expression of HSP90α significantly increased the secretion of endogenous AKR1B10 and exogenous GFP-AKR1B10 fusion protein when cotransfected. Geldanamycin, a HSP90α inhibitor, dissociated AKR1B10-HSP90α complexes and significantly reduced AKR1B10 secretion in a dose-dependent manner. We characterized the functional domain in AKR1B10 and found that helix 10 (amino acids 233–240), located at the C terminus, regulates AKR1B10 secretion. Targeted point mutations recognized that amino acids Lys-233, Glu-236, and Lys-240 in helix 10 mediate the interaction of AKR1B10 with HSP90α. Together, our data suggest that HSP90α mediates AKR1B10 secretion through binding to its helix 10 domain. This finding is significant in exploiting the use of AKR1B10 in cancer clinics.  相似文献   

2.
AKR1B10 (aldo-keto reductase 1B10) is overexpressed in liver and lung cancer, and plays a critical role in tumour development and progression through promoting lipogenesis and eliminating cytotoxic carbonyls. AKR1B10 is a secretory protein and potential tumour marker; however, little is known about the regulatory mechanism of AKR1B10 expression. The present study showed that AKR1B10 is induced by mitogen EGF (epidermal growth factor) and insulin through the AP-1 (activator protein-1) signalling pathway. In human HCC (hepatocellular carcinoma) cells (HepG2 and Hep3B), EGF (50?ng/ml) and insulin (10?nM) stimulated endogenous AKR1B10 expression and promoter activity. In the AKR1B10 promoter, a putative AP-1 element was found at bp -222 to -212. Deletion or mutation of this AP-1 element abrogated the basal promoter activity and response to EGF and AP-1 proteins. This AP-1 element bound to nuclear proteins extracted from HepG2 cells, and this binding was stimulated by EGF and insulin in a dose-dependent manner. Chromatin immunoprecipitation showed that the AP-1 proteins c-Fos and c-Jun were the predominant factors bound to the AP-1 consensus sequence, followed by JunD and then JunB. The same order was followed in the stimulation of endogenous AKR1B10 expression by AP-1 proteins. Furthermore, c-Fos shRNA (short hairpin RNA) and AP-1 inhibitors/antagonists (U0126 and Tanshinone IIA) inhibited endogenous AKR1B10 expression and promoter activity in HepG2 cells cultured in vitro or inoculated subcutaneously in nude mice. U0126 also inhibited AKR1B10 expression induced by EGF. Taken together, these results suggest that AKR1B10 is up-regulated by EGF and insulin through AP-1 mitogenic signalling and may be implicated in hepatocarcinogenesis.  相似文献   

3.
Calnuc is an ubiquitous, EF-hand Ca(2+) binding protein found in the cytoplasm where it binds to Galphai3, in the Golgi lumen where it constitutes a Ca(2+) storage pool, and secreted outside the cell. Here we investigated the pathway of secretion of calnuc in AtT20 cells. We found by pulse-chase experiments that calnuc is synthesized in the endoplasmic reticulum, transported to the Golgi where it remains greater than 12 h and undergoes posttranslational modification (O-glycosylation and sulfation) followed by secretion into the culture medium. We examined if calnuc is secreted by the constitutive or regulated secretory pathway in AtT20 cells. By immunofluorescence and immunogold labeling, endogenous calnuc is found in immature secretion granules (ISG) but not mature regulated secretory granules (RSG), whereas overexpressed calnuc-green fluorescent protein (GFP) is found in both ISG and RSG, where it colocalizes with ACTH. Neither calnuc nor calnuc-GFP are released by the regulated secretory pathway, suggesting that endogenous calnuc and calnuc-GFP are progressively removed from ISG and RSG during granule maturation. We conclude that calnuc is secreted via the constitutive-like pathway and represents a useful endogenous marker for this pathway in AtT20 cells. Together, these observations indicate that calnuc has a unique itinerary as it is retained in the Golgi and is then constitutively secreted extracellularly where it may influence cell behavior via its Ca(2+)-binding properties.  相似文献   

4.
A protein phosphatase and phosphatase inhibitors were used to examine the role of protein phosphorylation in the regulation of norepinephrine secretion in digitonin-permeabilized bovine chromaffin cells. Addition of okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, or 1-naphthylphosphate, a more general phosphatase inhibitor, to digitonin-permeabilized chromaffin cells caused about a 100% increase in the amount of norepinephrine secreted in the absence of Ca2+ (in 5 mM EGTA) without affecting the amount of norepinephrine secreted in the presence of 10 microM free Ca2+. This stimulation of norepinephrine secretion by protein phosphatase inhibitors suggests that in the absence of Ca2+ there is a slow rate phosphorylation and that this phosphorylation triggers secretion. Addition of an exogenous type 2A protein phosphatase caused almost a 50% decrease in Ca(2+)-dependent norepinephrine secretion. Thus, the amounts of norepinephrine released both in the absence of Ca2+ and in the presence of Ca2+ appear to depend upon the level of protein phosphorylation.  相似文献   

5.
Xiao AJ  Wang JL  Fang L  Kuang HB 《生理学报》2004,56(3):353-356
采用离体细胞体外孵育法,观察反义c-myb寡脱氧核苷酸(oligodeoxynucletides,ODN)对人绒毛膜促性隙激素(humanchorionic-gonadotropin hormone,hCG)诱导的人鼠间质细胞睾酮分泌的影响,并进一步探讨了外源性二丁酰cAMP(dbcAMP)、Ca^2 以及蛋白质抑制剂放线菌酮(cycloheximide,CYX)对间质细胞中c-Myb蛋白表达和睾酮分泌的作用。结果表明,反义c-myb ODN呈剂量依赖性地抑制hCG诱导的离体间质细胞的睾酮分泌,同时使间质细胞中c-Myb蛋白免疫组化染色下降:而无义tat ODN没有相应的作用。100μmol/L的dbc AMP可进一步促使hCG秀导的间质细胞分泌睾酮,并且使间质细胞中c-Myb蛋白免疫组化染色IOD值升高,与hCG组相比,具有统计学意义。钙离子通道阻断剂维拉帕米(10μmol/L)和蛋白质抑制剂放线菌酮(50μg/ml)可使hCG诱导的大鼠间质细胞的睾酮分泌下降,并使间质细胞的c-Myb蛋白免疫组化染色降低。该结果说明c-myb参与hCG诱导的大鼠间质细胞睾酮分泌作用。  相似文献   

6.
In recent years, protein translocation has been implicated as the mechanism that controls assembly of signaling complexes and induction of signaling cascades. Several members of the multifunctional Ca(2+)- (Zn(2+)- and Cu(2+))-binding S100 proteins appear to translocate upon cellular stimulation, and some are even secreted from cells, exerting extracellular functions. We transfected cells with S100B-green fluorescent fusion proteins and followed the relocation in real time. A small number of cells underwent translocation spontaneously. However, the addition of thapsigargin, which increases Ca(2+) levels, intensified ongoing translocation and secretion or induced these processes in resting cells. On the other hand, EGTA or BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), the Ca(2+)-chelating agents, inhibited these processes. In contrast, relocation of S100B seemed to be negatively dependent on Zn(2+) levels. Treatment of cells with TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine), a Zn(2+)-binding drug, resulted in a dramatic redistribution and translocation of S100B. Secretion of S100B, when measured by ELISA, was dependent on cell density. As cells reached confluence the secretion drastically declined. However, an increase in Ca(2+) levels, and even more so, a decrease in Zn(2+) concentration, reactivated secretion of S100B. On the other hand, secretion did not decrease by treatment with brefeldin A, supporting the view that this process is independent of the endoplasmic reticulum-Golgi classical secretion pathway.  相似文献   

7.
Aberrant cytosolic Ca(2+) flux in pancreatic acinar cells is critical to the pathological pancreatic zymogen activation observed in acute pancreatitis, but the downstream effectors are not known. In this study, we examined the role of Ca(2+)-activated protein phosphatase 2B (or calcineurin) in zymogen activation. Isolated pancreatic acinar cells were stimulated with supraphysiological caerulein (100 nM) with or without the calcineurin inhibitors FK506 or cell-permeable calcineurin inhibitory peptide (CiP). Chymotrypsin activity was measured as a marker of zymogen activation, and the percent amylase secretion was used as a measure of enzyme secretion. Cytosolic Ca(2+) changes were recorded in acinar cells loaded with the intermediate Ca(2+)-affinity dye fluo-5F using a scanning confocal microscope. A 50% reduction in chymotrypsin activity was observed after pretreatment with 1 microM FK506 or 10 microM CiP. These pretreatments did not affect amylase secretion or the rise in cytosolic Ca(2+) after caerulein stimulation. These findings suggest that calcineurin mediates caerulein-induced intra-acinar zymogen activation but not enzyme secretion or the initial caerulein-induced cytosolic Ca(2+) signal.  相似文献   

8.
We have studied the role of the actin cytoskeleton in bombesin-induced inositol 1,4,5-trisphosphate (IP(3))-production and Ca(2+)release in the pancreatic acinar tumour cell line AR4-2J. Intracellular and extracellular free Ca(2+)concentrations were measured in cell suspensions, using Fura-2. Disruption of the actin cytoskeleton by pretreatment of the cells with latrunculin B (10 microM), cytochalasin D (10 microM) or toxin B from Clostridium difficile (20 ng/ml) for 5-29 h led to inhibition of both, bombesin-stimulated IP(3)-production and Ca(2+)release. The toxins had no effect on binding of bombesin to its receptor, on Ca(2+)uptake into intracellular stores and on resting Ca(2+)levels. Ca(2+)mobilization from intracellular stores, induced by thapsigargin (100 nM) or IP(3)(1 microM) was not impaired by latrunculin B. In latrunculin B-pretreated cells inhibition of both, bombesin-stimulated IP(3)- production and Ca(2+)release was partly suspended in the presence of aluminum fluoride, an activator of G-proteins. Aluminum fluoride had no effect on basal IP(3)and Ca(2+)levels of control and toxin-pretreated cells. We conclude that disruption of the actin cytoskeleton impairs coupling of the bombesin receptor to its G-protein, resulting in inhibition of phospholipase C-activity with subsequent decreases in IP(3)-production and Ca(2+)release.  相似文献   

9.
The role of regucalcin, which is a regulatory protein in intracellular signaling pathway, in the regulation of cell death was investigated by using the cloned rat hepatoma H4-II-E cells overexpressing regucalcin. The hepatoma cells (wild-type) and stable regucalcin (RC)/pCXN2 transfectants were cultured for 72 h in medium containing 10% fetal bovine serum (FBS) to obtain subconfluent monolayers. The proliferation of the cells was significantly suppressed in transfectants cultured for 72 h, as shown previously (Tsurusaki and Yamaguchi [2003]: J Cell Biochem 90:619-626). After culture for 72 h, cells were further cultured for 24-72 h in medium without FBS containing either vehicle, tumor necrosis factor-alpha (TNF-alpha; 0.1, 1, or 10 ng/ml) or thapsigargin (10(-7)-10(-5) M). The number of wild-type cells was significantly decreased by culture for 42 or 72 h in the presence of TNF-alpha (0.1, 1, or 10 ng/ml) or thapsigargin (10(-7)-10(-5) M). The effect of TNF-alpha (0.1 or 1 ng/ml) or thapsigargin (10(-7) or 10(-6) M) in decreasing the number of hepatoma cells was significantly prevented in transfectants overexpressing regucalcin. The presence of TNF-alpha (10 ng/ml) or thapsigargin (10(-5) M) caused a significant decrease in cell number of transfectants. Ca(2+)/calmodulin-dependent nitric oxide (NO) synthase activity in wild-type cells was significantly increased by culture with TNF-alpha (10 ng/ml) for 48 or 72 h. This increase was significantly prevented in transfectants. Culture with thapsigargin (10(-5) M) caused a significant increase in Ca(2+)/calmodulin-dependent NO synthase activity in wild-type cells or transfectants. TNF-alpha-induced decrease in the number of wild-type cells was significantly prevented by culture with N omega-nitro-L-arginine (10(-4) M), an inhibitor of caspase. Agarose gel electrophoresis showed the presence of low-molecular-weight deoxyribonucleic acid (DNA) fragments of adherent wild-type cells cultured with thapsigargin (10(-6) M), and this DNA fragmentation was not suppressed by culture with caspase inhibitor. Thapsigargin-induced DNA fragmentation was significantly suppressed in transfectants cultured with or without caspase inhibitor. This study demonstrates that overexpression of regucalcin has a suppressive effect on cell death induced by TNF-alpha or thapsigargin.  相似文献   

10.
To identify lung lamellar body (LB)-binding proteins, the fractions binding to LB-Sepharose 4B in a Ca(2+)-dependent manner from the lung soluble fractions were analyzed with Mono Q column. Four annexins (annexins III, IV, V, and VIII) were identified by partial amino acid sequence analyses as the LB-binding proteins in the lung soluble fractions. A control experiment using phospholipid (phosphatidylserine/phosphatidylglycerol/phosphtidylcholine) liposome-Sepharose 4B revealed that annexins III, IV and V were the Ca(2+)-dependent proteins binding to the column in the lung soluble fractions, while annexin VIII was not detected. Thus, annexin VIII might preferentially bind to LB. On the other hand, the only Ca(2+)-dependent LB-binding protein identified in the bronchoalveolar lavage fluids was annexin V. It was further demonstrated that annexin V was secreted by isolated alveolar type II cells from rats and that the secretion was stimulated by the addition of phorbol ester (PMA), a potent stimulator of surfactant secretion. The PMA-dependent stimulation of annexin V was attenuated by preincubation with surfactant protein-A (SP-A), a potent inhibitor of surfactant secretion. As LB is thought to be an intracellular store of pulmonary surfactant, which is secreted by alveolar type II cells, annexin V is likely to be secreted together with the lamellar body.  相似文献   

11.
12.
Lactating mammary epithelial cells secrete high levels of caseins and other milk proteins. The extent to which protein secretion from these cells occurs in a regulated fashion was examined in experiments on secretory acini isolated from the mammary glands of lactating mice at 10 d postpartum. Protein synthesis and secretion were assayed by following the incorporation or release, respectively, of [35S]methionine-labeled TCA-precipitable protein. The isolated cells incorporated [35S]methionine into protein linearly for at least 5 h with no discernible lag period. In contrast, protein secretion was only detectable after a lag of approximately 1 h, consistent with exocytotic secretion of proteins immediately after passage through the secretory pathway and package into secretory vesicles. The extent of protein secretion was unaffected by the phorbol ester PMA, 8-bromo-cAMP, or 8-bromo-cGMP but was doubled by the Ca2+ ionophore ionomycin. In a pulse-label protocol in which proteins were prelabeled for 1 h before a chase period, constitutive secretion was unaffected by depletion of cytosolic Ca2+ but ionomycin was found to give a twofold stimulation of the secretion of presynthesized protein in a Ca(2+)-dependent manner. Ionomycin was still able to stimulate protein secretion after constitutive secretion had terminated. These results suggest that lactating mammary cells possess both a Ca(2+)-independent constitutive pathway and a Ca(2+)-activated regulatory pathway for protein secretion. The same proteins were secreted by both pathways. No ultrastructural evidence for apocrine secretion was seen in response to ionomycin and so it appears that regulated casein release involves exocytosis. Ionomycin was unlikely to be acting by disassembling the cortical actin network since cytochalasin D did not mimic its effects on secretion. The regulated pathway may be controlled by Ca2+ acting at a late step such as exocytotic membrane fusion.  相似文献   

13.
Store-operated Ca(2+) channels (SOC) are expressed in cultured human mesangial cells and activated by epidermal growth factor through a pathway involving protein kinase C (PKC). We used fura-2 fluorescence and patch clamp experiments to determine the role of PKC in mediating the activation of SOC after depletion of internal stores by thapsigargin. The measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) revealed that the thapsigargin-induced Ca(2+) entry pathway was abolished by calphostin C, a protein kinase C inhibitor. The PKC activator, phorbol 12-myristate 13-acetate (PMA), promoted a Ca(2+) influx that was significantly attenuated by calphostin C and La(3+) but not by diltiazem. Neither PMA nor calphostin C altered the thapsigargin-induced initial transient rise in [Ca(2+)](i). In cell-attached patch clamp experiments, the thapsigargin-induced activation of SOC was potentiated by PMA and abolished by both calphostin C and staurosporine. However, SOC was unaffected by thapsigargin when clamping [Ca(2+)](i) with 1,2-bis (o-Aminophenoxy)ethane-N,N,N',N'tetraacetic acid tetra(acetoxymethyl)ester. In the absence of thapsigargin, PMA and phorbol 12, 13-didecanoate evoked a significant increase in NP(O) of SOC, whereas calphostin C did not affect base-line channel activity. In inside-out patches, SOC activity ran down immediately upon excision but was reactivated significantly after adding the catalytic subunit of 0.1 unit/ml of PKC plus 100 microm ATP. Neither ATP alone nor ATP with heat-inactivated PKC rescued a rundown of SOC. Metavanadate, a general protein phosphatase inhibitor, also enhanced SOC activity in inside-out patches. Bath [Ca(2+)] did not significantly affect the channel activity in inside-out patch. These results indicate that the depletion of Ca(2+) stores activates SOC by PKC-mediated phosphorylation of the channel proteins or a membrane-associated complex.  相似文献   

14.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

15.
The effect of prolactin (PRL) on ion transport across the rat colon epithelium was investigated using Ussing chamber technique. PRL (1 μg/ml) induced a sustained decrease in short-circuit current (I(sc)) in the distal colon with an EC(50) value of 100 ng/ml and increased I(sc) in the proximal colon with an EC(50) value of 49 ng/ml. In the distal colon, the PRL-induced decrease in I(sc) was not affected by Na(+) channel blocker amiloride or Cl(-) channel blockers, NPPB, DPC, or DIDS, added mucosally. However, the response was inhibited by mucosal application of K(+) channel blockers glibenclamide, quinidine, and chromanol 293B, whereas other K(+) channel blockers, Ba(2+), tetraethylammonium, clotrimazole, and apamin, failed to have effects. The PRL-induced decrease in I(sc) was also inhibited by Na(+)-K(+)-2Cl(-) transporter inhibitor bumetanide, Ba(2+), and chromanol 293B applied serosally. In the transverse and proximal colon, the PRL-induced increase in I(sc) was suppressed by DPC, glibenclamide, and bumetanide, but not by NPPB, DIDS, or amiloride. The PRL-induced changes in I(sc) in both distal and proximal colon were abolished by JAK2 inhibitor AG490, but not BAPTA-AM, the Ca(2+) chelating agent, or phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest a segment-specific effect of PRL in rat colon, by activation of K(+) secretion in the distal colon and activation of Cl(-) secretion in the transverse and proximal colon. Both PRL actions are mediated by JAK-STAT-dependent pathway, but not phosphatidylinositol 3-kinase pathway or Ca(2+) mobilization. These findings suggest a role of PRL in the regulation of electrolyte transport in mammalian colon.  相似文献   

16.
We measured the pokeweed mitogen (PWM)-induced secretion of IgG by the unfractionated mononuclear cells (MNC) of young adult donors, and correlated the results with the functional activity of cell suspensions enriched for T helper (T4+) and T suppressor/cytotoxic (T8+) cells. The distribution of IgG levels secreted by MNC differs from a Gaussian curve, implying that the group is composed of distinct heterogeneous populations. When donors were compared who were judged to be very low responders or very high responders on the basis of IgG secretion levels by MNC (less than 700 ng/ml or greater than 2500 ng/ml), no differences were found in the capacity of T4+-enriched cells to support PWM-driven IgG secretion by a common B cell pool. In contrast, the addition of 0.2 X 10(5) T8+ cells from these low responders to PWM-stimulated cultures of 0.5 X 10(5) T4+ cells plus 0.5 X 10(5) B cells resulted in significantly less IgG secretion (389 +/- 121 ng/ml) than did the addition of the same number of T8+ cells from the high responders (2241 +/- 548 ng/ml, p less than 0.01). Normalized percent suppression by T8+ cells was higher in low responders than in high responders (77.0 +/- 9.9% vs 33.0 +/- 8.5%, p less than 0.01). Both high and low responders markedly suppressed IgG secretion when 0.5 X 10(5) T8+ cells were added. No correlation was found either between proportion of T3+, T8+, T4+, or M1+ cells within the MNC population and levels of IgG secretion by MNC or between T8+ numbers and levels of suppression induced by a constant number of T8+-enriched cells. Our data indicate that differences in the functional activity of T8+ cells, rather than quantitative differences, account for the wide range of PWM-induced IgG secretion by MNC.  相似文献   

17.
18.
The role of endogenous regucalcin in the regulation of Ca(2+)-ATPase, a Ca(2+) sequestrating enzyme, in rat liver nuclei was investigated. Nuclear Ca(2+)-ATPase activity was significantly reduced by the addition of regucalcin (0.1-0.5 microM) into the enzyme reaction mixture. The presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) caused a significant elevation of Ca(2+)-ATPase activity; this effect was completely abolished by the addition of regucalcin (0.1 microM). The effect of anti-regucalcin antibody (50 ng/ml) in increasing Ca(2+)-ATPase activity was completely prevented by the presence of thapsigargin (10(-6) M), an inhibitor of Ca(2+) sequestrating enzyme, N-ethylmaleimide (1 mM), a modifying reagent of thiol groups, or vanadate (10(-5) M), an inhibitor of phosphorylation of the enzyme by ATP, which revealed an inhibitory effect on nuclear Ca(2+)-ATPase activity. Meanwhile, the effect of anti-regucalcin antibody (50 ng/ml) was significantly enhanced by the addition of calmodulin (5 microg/ml), which could increase nuclear Ca(2+)-ATPase activity. In addition, the effect of antibody (50 ng/ml) was significantly reduced by the presence of trifluoperazine (20 microM), an antagonist of calmodulin. These results suggest that the endogenous regucalcin in liver nuclei has a suppressive effect on nuclear Ca(2+)-ATPase activity, and that regucalcin can inhibit an activating effect of calmodulin on the enzyme.  相似文献   

19.
Lipoxins are biologically active eicosanoids possessing anti-inflammatory properties. Using a calcium imaging system we investigated the effect of lipoxin A(4) (LXA(4)) on intracellular [Ca(2+)] ([Ca(2+)](i)) of human bronchial epithelial cell. Exposure of the cells to LXA(4) produced a dose-dependent increase in [Ca(2+)](i) followed by a recovery to basal values in primary culture and in 16HBE14o(-) cells. The LXA(4)-induced [Ca(2+)](i) increase was completely abolished after pre-treatment of the 16HBE14o(-) cells with pertussis toxin (G-protein inhibitor). The [Ca(2+)](i) response was not affected by the removal of external [Ca(2+)] but completely inhibited by thapsigargin (Ca(2+)-ATPase inhibitor) treatment. Pre-treatment of the bronchial epithelial cells with either MDL hydrochloride (adenylate cyclase inhibitor) or (R(p))-cAMP (cAMP-dependent protein kinase inhibitor) inhibited the Ca(2+) response to LXA(4). However, the response was not affected by chelerytrine chloride (protein kinase C inhibitor) or montelukast (cysteinyl leukotriene receptor antagonist). The LXA(4) receptor mRNA was detected, by RT-PCR, in primary culture of human bronchial epithelium and in immortalized 16HBE14o(-) cells. The functional consequences of the effect of LXA(4) on intracellular [Ca(2+)](i) have been investigated on Cl(-) secretion, measured using the short-circuit techniques on 16HBE14o(-) monolayers grown on permeable filters. LXA(4) produced a sustained stimulation of the Cl(-) secretion by 16HBE14o(-) monolayers, which was inhibited by BAPTA-AM, a chelator of intracellular calcium. Taken together our results provided evidence for the stimulation of a [Ca(2+)](i) increase by LXA(4) through a mechanism involving its specific receptor and protein kinase A activation and resulting in a subsequent Ca(2+)-dependent Cl(-) secretion by human airway epithelial cells.  相似文献   

20.
Aldo-keto reductase family 1 B10 (AKR1B10, also designated aldose reductase-like-1, ARL-1) is a novel protein identified from human hepatocellular carcinoma (HCC). This protein belongs to aldo-keto reductase superfamily, a group of proteins implicated in intracellular detoxification, cell carcinogenesis, and cancer therapeutics. AKR1B10 is primarily expressed in the colon and small intestine with low levels in the liver, thymus, prostate, and testis but overexpressed in the liver and lung cancer, making it a potential cancer diagnostic and/or prognostic marker. AKR1B10 could reduce retinals to retinols eliminating intracellular retinoic acid, a signaling molecule regulating cell proliferation and differentiation. AKR1B10 may impact the carcinogenesis process through controlling retinoic acid signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号