首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several lines of evidence are presented that indicate that the level of tetracycline resistance of Esherichia coli strains harboring plasmid pBR322 varies according to whether the SOS system of the host bacteria has been induced. These include use of strains in which the SOS system is expressed constitutively (lexA def.), is thermoinducible (recA441) or noninducible (lexA ind-), or is highly repressed (multiple copies of lexA+). Similar induction was observed with the product of another plasmid gene, beta-lactamase. The amounts of extractable plasmid DNA were also increased by SOS induction, and we propose that the SOS-induced increases in levels of tetracycline resistance and beta-lactamase activity are due to an increased plasmid copy number.  相似文献   

2.
Design of elementary molecular logic gates is the key and the fundamental of performing complicated Boolean calculations. Herein, we report a strategy for constructing a DNA-based OR gate by using the mechanism of sequence recognition and the principle of fluorescence resonance energy transfer (FRET). In this system, the gate is entirely composed of a single strand of DNA (A, B and C) and the inputs are the molecular beacon probes (MB1 and MB2). Changes in fluorescence intensity confirm the realization of the OR logic operation and electrophoresis experiments verify these results. Our successful application of DNA to perform the binary operation represents that DNA can serve as an efficient biomaterial for designing molecular logic gates and devices.  相似文献   

3.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

4.
Regulation of expression of the colicin gene of I1 group plasmid TP110.   总被引:2,自引:1,他引:1  
The control of expression of the colicin Ib gene of the I1 group plasmid TP110 has been investigated. The colicin promoter was fused to the structural gene for beta-galactosidase, using the Mu d(Aprlac) phage, and the plasmid carrying this fusion was introduced into a variety of bacterial strains defective in genes involved in the "SOS" response. Colicin Ib belongs to that group of genes directly controlled by the repressor produced by the lexA gene, and expression was inducible by DNA-damaging agents. Mutations in uvrA, -B, and -C reduced the efficiency of induction by mitomycin C, as did mutations in recB. Mutations in recA and recF effectively prevented induction by mitomycin C, whereas mutations in lexA had contrasting effects, depending upon their effect on the properties of lexA protein. The spr-51 mutation (which inactivates lexA protein) led to constitutive expression, whereas the lexA3 mutation (which makes lexA protein refractory to cleavage by recA protein) completely inhibited inducible expression. In addition to lexA control, a TP110-coded function was identified which appeared able to inhibit colicin expression when the gene responsible was present in high copy number.  相似文献   

5.
Alkalinization of intracellular pH (pHi) causes an increase in UV resistance in wild-type and pH-sensitive mutant (DZ3) cells of Escherichia coli. Utilizing cells transformed with a plasmid (pA7) which bears the uvrA promoter fused to galK galactokinase structural gene, it was shown that alkaline pHi leads to an increase in the specific activity of galactokinase. This effect was not displayed in a mutant bearing a recA-insensitive lexA gene, nor in cells harboring a plasmid (pA8) in which the galK is fused to a lexA-insensitive uvrA promoter. Hence, the effects of pHi on cells functions may involve the lexA product of the SOS system.  相似文献   

6.
7.
Salmonella typhimurium has a SOS regulon which resembles that of Escherichia coli. recA mutants of S. typhimurium have already been isolated, but no mutations in lexA have been described yet. In this work, two different lexA mutants of S. typhimurium LT2 have been constructed on a sulA background to prevent cell death and further characterized. The lexA552 and lexA11 alleles contain an insertion of the kanamycin resistance fragment into the carboxy- and amino-terminal regions of the lexA gene, respectively. SOS induction assays indicated that both lexA mutants exhibited a LexA(Def) phenotype, although SOS genes were apparently more derepressed in the lexA11 mutant than in the lexA552 mutant. Like lexA(Def) of E. coli, both lexA mutations only moderately increased the UV survival of S. typhimurium, and the lexA552 strain was as mutable as the lexA+ strain by UV in the presence of plasmids encoding MucAB or E. coli UmuDC (UmuDCEc). In contrast, a lexA11 strain carrying any of these plasmids was nonmutable by UV. This unexpected behavior was abolished when the lexA11 mutation was complemented in trans by the lexA gene of S. typhimurium. The results of UV mutagenesis correlated well with those of survival to UV irradiation, indicating that MucAB and UmuDCEc proteins participate in the error-prone repair of UV damage in lexA552 but not in lexA11. These intriguing differences between the mutagenic responses of lexA552 and lexA11 mutants to UV irradiation are discussed, taking into account the different degrees to which the SOS response is derepressed in these mutants.  相似文献   

8.
We show here that expression of the colicin gene of the ColE1 plasmid is greatly derepressed in Escherichia coli K-12 strain DM1187 spr tif sfi, which is a constitutive tif mutant, altered in the lexA gene, and which shows constitutive expression of various pathways of the recA-dependent, lexA-blocked (SOS) repair system. In this strain colicin E1 synthesis is at least 100-fold greater than that observed in uninduced control strains (spr+ tif sfi and spr+ tif+ sfi). This result confirms the regulatory role of the lexA product in colicin E1 synthesis. Colicin yields by the uninduced strain DM1187 are as high as the maximum yields from mitomycin-induced control strains and often are several-fold higher. When the nonconstitutive tif sfi strain GC467 is raised to 43 degrees C to induce the SOS system, a low level of colicin synthesis is observed which is less than one-tenth of the yield obtained by induction with mitomycin C. Addition of adenine at the time of shift-up can increase the colicin yield of tif sfi to about one-third of the yield obtained with mitomycin C. We have also found that colicin overproduction can be detected by altered colony appearance in an overlay assay with colicin-sensitive bacteria. In addition, the lethality of the process of colicin synthesis is observed here without the use of bacteriostatic inducing agents.  相似文献   

9.
Signal integration in the galactose network of Escherichia coli   总被引:1,自引:1,他引:0  
  相似文献   

10.
We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.  相似文献   

11.
Summary UV irradiation of competent cells of Escherichia coli K12 produced an increase in the efficiency of transformation with plasmid DNA. This phenomenon has been called IPTE (increase in plasmid transformation efficiency) and is dependent on the activated state of the RecA protein. IPTE is independent of the lexA, recB recC, and recF genes. It is not related to the size or the replicon type of the plasmid. Furthermore, it is also induced in cells which have been previously treated with other SOS system-inducing agents such as bleomycin, mitomycin C, or nalidixic acid. IPTE is therefore similar to other repair (SOS) functions inducible by DNA damage since all of them are dependent upon activation of the RecA protein. IPTE differs from other SOS functions in the absence of a direct control by the LexA repressor.  相似文献   

12.
The lexA41 (formerly tsl-1) mutant was isolated as an ultraviolet light-resistant, temperature-sensitive derivative of its ultraviolet light-sensitive lexA3(Ind) parent. Cells exhibit a so-called “split-phenotype”, a phenomenon in which only a subset of the SOS responses can be detected physiologically following inducing treatments. lexA41 has been cloned and sequenced; the mutant gene retains the (tflexA3) mutation (Gly to Asp at position 85) and has a second mutation, lexA41 (Ala to Thr at position 131). We show that LexA41 protein is not cleaved by the RecA protein-catalyzed pathway in vivo, but the mutant protein is degraded by the Lon protease at both 32 ° C and 42 ° C. β-Galactosidase activities of lac fusions to 13 different SOS promoters were measured at 30 ° C and 42 ° C to determine levels of expression and were found to vary considerably. The temperature-sensitive phenotype is a result of increased expression of sulA, which encodes a division inhibitor, at 42 ° C. Excision repair genes, including uvn A, uvrB and uvr D, are constitutively expressed at 30 ° C accounting for the ultraviolet light resistance of the lexA41 mutant, but the SOS mutagenesis operon, umuD,C, is not adequately derepressed, thereby explaining the failure to induce mutagenesis in this background. This differential expression of SOS genes gives a plausible explanation of the split-phenotype associated with lexA41.  相似文献   

13.
One-step cloning system for isolation of bacterial lexA-like genes.   总被引:7,自引:3,他引:4       下载免费PDF全文
S Calero  X Garriga    J Barb 《Journal of bacteriology》1991,173(22):7345-7350
A system to isolate lexA-like genes of bacteria directly was developed. It is based upon the fact that the presence of a lexA(Def) mutation is lethal to SulA+ cells of Escherichia coli. This system is composed of a SulA- LexA(Def) HsdR- strain and a lexA-conditional killer vector (plasmid pUA165) carrying the wild-type sulA gene of E. coli and a polylinker in which foreign DNA may be inserted. By using this method, the lexA-like genes of Salmonella typhimurium, Erwinia carotovora, Pseudomonas aeruginosa, and P. putida were cloned. We also found that the LexA repressor of S. typhimurium presented the highest affinity for the SOS boxes of E. coli in vivo, whereas the LexA protein of P. aeruginosa had the lowest. Likewise, all of these LexA repressors were cleaved by the activated RecA protein of E. coli after DNA damage. Furthermore, under high-stringency conditions, the lexA gene of E. coli hybridized with the lexA genes of S. typhimurium and E. carotovora but not with those of P. aeruginosa and P. putida.  相似文献   

14.
Using a newly synthesized gibberellin analog containing an acetoxymethyl group (GA(3)-AM) and its binding proteins, we developed an efficient chemically inducible dimerization (CID) system that is completely orthogonal to existing rapamycin-mediated protein dimerization. Combining the two systems should allow applications that have been difficult or impossible with only one CID system. By using both chemical inputs (rapamycin and GA(3)-AM), we designed and synthesized Boolean logic gates in living mammalian cells. These gates produced output signals such as fluorescence and membrane ruffling on a timescale of seconds, substantially faster than earlier intracellular logic gates. The use of two orthogonal dimerization systems in the same cell also allows for finer modulation of protein perturbations than is possible with a single dimerizer.  相似文献   

15.
16.
Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad-spacer-dyad palindromic sequence, 5'-TGTACAAATGTACA-3', located at nucleotides -41 to -28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at -133 to -116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides -19 to -5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.  相似文献   

17.
The products of the lexA and recA genes play central roles in the regulation of the Escherichia coli SOS response. We have measured the rate of mRNA synthesis from each gene at intervals following various inducing treatments in order to obtain a more precise timing of the induction process. Further, we provide quantitative evidence for kinetics of decay from fully induced levels of mRNA synthesis to basal levels as the cells shut down the SOS response which are in agreement with previously published data on the expression of specific SOS functions. The induction kinetics of lexA and recA gene expression are parallel except for nalidixic acid (NAL) treatment, with the actual levels of lexA mRNA synthesis being about 10-fold lower than that of recA. Reestablishment of repression from RecA commenced over 30 min earlier than from lexA. These results are fully consistent with the model that the functions result from the increased gene expression.  相似文献   

18.
The mapping of mutA and mutC mutator alleles to the glyV and glyW glycine tRNA genes, respectively, and the subsequent discovery that the mutA phenotype is abolished in a DeltarecA strain raise the possibility that asp --> gly misinsertion may induce a novel mutagenic pathway. The recA requirement suggests three possibilities: (i) the SOS mutagenesis pathway is activated in mutA cells; (ii) loss of recA function interferes with mutA-promoted asp --> gly misinsertion; or (iii) a hitherto unrecognized recA-dependent mutagenic pathway is activated by translational stress. By assaying the expression levels of a reporter plasmid bearing a umuC :lacZ fusion, we show that the SOS regulon is not in a derepressed state in mutA cells. Neither overexpression of the lexA gene through a multicopy plasmid nor replacement of the wild-type lexA allele with the lexA1[Ind-] allele interferes with the expression of the mutA phenotype. The mutA phenotype is unaffected in cells defective for dinB, as shown here, and is unaffected in cells defective for umuD and umuC genes, as shown previously. We show that mutA-promoted asp --> gly misinsertion occurs in recA- cells and, therefore, the requirement for recA is 'downstream' of mistranslation. Finally, we show that the mutA phenotype is abolished in cells deficient for recB, suggesting that cellular recombination functions may be required for the expression of the mutator phenotype. We propose that translational stress induces a previously unrecognized mutagenic pathway in Escherichia coli.  相似文献   

19.
Demonstration of a universal surface DNA computer   总被引:1,自引:0,他引:1       下载免费PDF全文
Su X  Smith LM 《Nucleic acids research》2004,32(10):3115-3123
A fundamental concept in computer science is that of the universal Turing machine, which is an abstract definition of a general purpose computer. A general purpose (universal) computer is defined as one which can compute anything that is computable. It has been shown that any computer which is able to simulate Boolean logic circuits of any complexity is such a general purpose computer. The field of DNA computing was founded in 1994 by Adleman's solution of a 7-bit instance of the Hamiltonian path problem. This work, as well as most of the subsequent experimental and theoretical investigations in the area, focused primarily upon the solution of NP-complete problems, which are a subset of the larger universal class of problems. In the present work a surface DNA computer capable of simulating Boolean logic circuits is demonstrated. This was done by constructing NOR and OR gates and combining them into a simple logic circuit. The NOR gate is one of the universal gates in Boolean logic, meaning that any other logic gate can be built from it alone. The circuit was solved using DNA-based operations, demonstrating the universal nature of this surface DNA computing model.  相似文献   

20.
V M Kopylov  I A Khmel' 《Genetika》1983,19(8):1221-1226
To clarify the mechanisms whereby the ColIb-P9 plasmid affects DNA repair processes, its effect was studied in mutant Escherichia coli K-12 cells with altered mutagenesis and DNA repair. The plasmid was shown to protect umuC, uvm, recL and uvrE mutants after UV irradiation. The frequency of UV-induced his+ revertants increased in the presence of the plasmid in umuC, uvm and recL mutant cells. The ColIb-P9 plasmid completely restored the UV mutability and survival of umuC mutants. These results suggest that the ColIb-P9 plasmid may encode a product similar to that of the umuC gene. In the tif1 sfiA lexA spr mutant cells where SOS functions are constitutively expressed, the ColIb-P9 plasmid increased the number of his+ revertants several times. This suggests that the action of ColIb-P9 is probably brought about not via the derepression of the recA gene but at the subsequent stages of the recA+lexA+-dependent DNA error-prone repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号