首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forty different monoclonal antibodies were produced from hybridomas that were raised against human Lp[a]. Of these, 14 strongly cross-reacted with plasminogen on ELISA screening assays while 16 clearly did not and 10 were only marginally cross-reactive. We took advantage of the homology between plasminogen and apo[a] to define the epitopes of 8 strongly cross-reacting monoclonal antibodies. We were able to subdivide these into four general categories based upon site competition assays (using both plasminogen and Lp[a]), and their reactivity with elastolytically derived plasminogen fragments. Group A monoclonal antibodies (F1 1E3, F2 3A3) recognized epitopes within the kringle 5 and protease domains (miniplasminogen) of plasminogen. The group B monoclonal antibody (F6 1A3) reacted solely with plasminogen kringle 4-like domains and appeared to recognize a limited number of sites on Lp[a]. Group C monoclonal antibodies (F6 1B5, F6 1G9) recognized a second, more frequently distributed site within these kringle 4-like domains. The final group, D, monoclonal antibodies (F6 2C3, F6 2G2, F6 3F4) reacted with a cluster of sites found associated with kringle 4-like domains but also reacted with the miniplasminogen domain. Interestingly, only the members of this group were able to interfere with the proteolytic activity of plasmin. Neither periodate treatment of Lp[a] nor incubation of Lp[a] with epsilon-aminocaproic acid affected the binding of any of our monoclonal antibodies.  相似文献   

2.
Apolipoprotein(a) [apo(a)] is the distinctive glycoprotein of lipoprotein Lp(a), which is disulfide linked to the apo B100 of a low density lipoprotein particle. Apo(a) possesses a high degree of sequence homology with plasminogen, the precursor of plasmin, a fibrinolytic and pericellular proteolytic enzyme. Apo(a) exists in several isoforms defined by a variable number of copies of plasminogen-like kringle 4 and single copies of kringle 5, and the protease region including the backbone positions for the catalytic triad (Ser, His, Asp). A lysine-binding site that is similar to that of plasminogen kringle 4 is present in apo(a) kringle IV type 10. These kringle motifs share some amino acid residues (Asp55, Asp57, Phe64, Tyr62, Trp72, Arg71) that are key components of their lysine-binding site. The spatial conformation and the function of this site in plasminogen kringle 4 and in apo(a) kringle IV-10 seem to be identical as indicated by (i) the ability of apo(a) to compete with plasminogen for binding to fibrin, and (ii) the neutralisation of the lysine-binding function of these kringles by a monoclonal antibody that recognises key components of the lysine-binding site. In contrast, the lysine-binding site of plasminogen kringle 1 contains a Tyr residue at positions 64 and 72 and is not recognised by this antibody. Plasminogen bound to fibrin is specifically recognised and cleaved by the tissue-type plasminogen activator at Arg561-Val562, and is thereby transformed into plasmin. A Ser-Ile substitution at the activation cleavage site is present in apo(a). Reinstallation of the Arg-Val peptide bond does not ensure cleavage of apo(a) by plasminogen activators. These data suggest that the stringent specificity of tissue-type plasminogen activator for plasminogen requires molecular interactions with structures located remotely from the activation disulfide loop. These structures ensure second site interactions that are most probably absent in apo(a).  相似文献   

3.
In vitro hydrolysis of human lipoprotein[a] (Lp[a]) by phospholipase A2 (PLA2) decreased the phosphatidylcholine (PC) content by 85%, but increased nonesterified fatty acids 3.2-fold and lysoPC 12.9-fold. PLA2-treated Lp[a] had a decreased molecular weight, increased density, and greater electronegativity on agarose gels. In solution, PLA2-Lp[a] was a monomer, and when assessed by sedimentation velocity it behaved like untreated Lp[a], in that it remained compact in NaCl solutions but assumed the extended form in the presence of 6-amino hexanoic acid, which was shown previously to have an affinity for the apo[a] lysine binding site II (LBS II) comprising kringles IV5-8. We interpreted our findings to indicate that PLA2 digestion had no effect on the reactivity of this site. This conclusion was supported by the results obtained from lysine Sepharose and fibrinogen binding experiments, in the presence and absence of Tween 20, showing that phospholipolysis had no effect on the reactivity of the LBS-II domain. A comparable binding behavior was also exhibited by the free apo[a] derived from each of the two forms of Lp[a]. We did observe a small increase in affinity of PLA2-Lp[a] to lysine Sepharose and attributed it to changes in reactivity of the LBS I domain (kringle IV10) induced by phospholipolysis. In conclusion, the extensive modification of Lp[a] caused by PLA2 digestion had no significant influence on the reactivity of LBS II, which is the domain involved in the binding of apo[a] to fibrinogen and apoB-100. These results also suggest that phospholipids do not play an important role in these interactions.  相似文献   

4.
Similarity between the apolipoprotein(a) (apo(a)) moiety of lipoprotein(a) (Lp(a)) and plasminogen suggests a potentially important link between atherosclerosis and thrombosis. Lp(a) may interfere with tissue plasminogen activator (tPA)-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoagulable state in vivo. A fluorescence-based system was employed to study the effect of apo(a) on plasminogen activation in the presence of native fibrin and degraded fibrin cofactors and in the absence of positive feedback reactions catalyzed by plasmin. Human Lp(a) and a physiologically relevant, 17-kringle recombinant apo(a) species exhibited strong inhibition with both cofactors. A variant lacking the protease domain also exhibited strong inhibition, indicating that the apo(a)-plasminogen binding interaction mediated by the apo(a) protease domain does not ultimately inhibit plasminogen activation. A variant in which the strong lysine-binding site in kringle IV type 10 had been abolished exhibited substantially reduced inhibition whereas another lacking the kringle V domain showed no inhibition. Amino-terminal truncation mutants of apo(a) also revealed that additional sequences within kringle IV types 1-4 are required for maximal inhibition. To investigate the inhibition mechanism, the concentrations of plasminogen, cofactor, and a 12-kringle recombinant apo(a) species were systematically varied. Kinetics for both cofactors conformed to a single, equilibrium template model in which apo(a) can interact with all three fibrinolytic components and predicts the formation of ternary (cofactor, tPA, and plasminogen) and quaternary (cofactor, tPA, plasminogen, and apo(a)) catalytic complexes. The latter complex exhibits a reduced turnover number, thereby accounting for inhibition of plasminogen activation in the presence of apo(a)/Lp(a).  相似文献   

5.
The plasma concentration of human lipoprotein(a) [Lp(a)] is correlated with the risk of heart disease. A distinct feature of the Lp(a) particle is the apolipoprotein (a) [apo(a)], which is associated with apoB-100, the main protein component of low-density lipoprotein. We now report that apo(a), which has extensive homology to plasminogen, binds to immobilized fibronectin. The binding of Lp(a) was localized to the C-terminal heparin-binding domain of fibronectin. Incubation of Lp(a) with fibronectin resulted in fragmentation of fibronectin. The cleavage pattern, as visualized by gel electrophoresis and immunoblotting, was reproducibly obtained with Lp(a) purified from five different individuals and was distinct from that obtained upon proteolysis of fibronectin by plasmin or kallikrein. The use of synthetic peptide substrates demonstrated that the amino acid specificity for Lp(a) was arginine rather than lysine. The proteolytic activity of Lp(a) was localized to apo(a) and experiments with inhibitors indicated that the proteolytic activity was of serine proteinase-type.  相似文献   

6.
Lipoprotein(a) [Lp(a)], but not low-density lipoprotein (LDL), was previously shown to impair the generation of fibrin-bound plasmin [Rouy et al. (1991) Arterioscler. Thromb. 11, 629-638] by a mechanism involving binding of Lp(a) to fibrin. It was therefore suggested that the binding was mediated by apolipoprotein(a) [apo(a)], a glycoprotein absent from LDL which has a high degree of homology with plasminogen, the precursor of the fibrinolytic enzyme plasmin. Here we have evaluated this hypothesis by performing comparative fibrin binding studies using a recombinant form of apo(a) containing 17 copies of the apo(a) domain resembling kringle 4 of plasminogen, native Lp(a), and Glu-plasminogen (Glu1-Asn791). Attempts were also made to identify the kringle domains involved in such interactions using isolated elastase-derived plasminogen fragments. The binding experiments were performed using a well-characterized model of an intact and of a plasmin-digested fibrin surface as described by Fleury and Anglés-Cano [(1991) Biochemistry 30, 7630-7638]. Binding of r-apo(a) to the fibrin surfaces was of high affinity (Kd = 26 +/- 8.4 nM for intact fibrin and 7.7 +/- 4.6 nM for plasmin-degraded fibrin) and obeyed the Langmuir equation for adsorption at interfaces. The binding to both surfaces was inhibited by the lysine analogue AMCHA and was completely abolished upon treatment of the degraded surface with carboxypeptidase B, indicating that r-apo(a) binds to both the intrachain lysines of intact fibrin and the carboxy-terminal lysines of degraded fibrin. As expected from these results, both r-apo(a) and native Lp(a) inhibited the binding of Glu-plasminogen to the fibrin surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The genetic variability of apolipoprotein E (apoE) influences plasma lipoprotein levels, and allele frequencies differ between African Americans and Caucasians. As African Americans have higher lipoprotein [a] (Lp[a]) levels than Caucasians, we investigated the effects of the apoE gene on allele-specific apolipoprotein [a] (apo[a]) levels across ethnicity. We determined apo[a] sizes, allele-specific apo[a] levels (i.e., levels associated with alleles defined by size), and the apoE gene polymorphism in 231 African Americans and 336 Caucasians. African Americans, but not Caucasians, with the apo E2 genotype had lower levels of Lp[a] compared with those with the apo E4 genotype (9.6 vs. 11.2 nmol/l; P = 0.034, expressed as square root levels). Distribution of apo[a] alleles across apoE genotypes were similar between African Americans and Caucasians. Among African Americans with large apo[a], the allele-specific apo[a] level was significantly lower among epsilon2 carriers compared with epsilon3 or epsilon4 carriers (5.4 vs. 6.6 and 7.4 nmol/l, respectively; P < 0.005, expressed as square root levels). In contrast, there was no significant difference in allele-specific apo[a] levels across apoE genotypes among Caucasians. For large apo[a] sizes, apoE genotype contributed to the observed African American-Caucasian differences in allele-specific apo[a] levels.  相似文献   

8.
In previous studies, we showed that the C-terminal domain, F2, but not the N-terminal domain, F1, is responsible for the binding of apolipoprotein [a] (apo[a]) to human fibronectin (Fn). To pursue those observations, we prepared, by both elastase digestion and recombinant technology, subsets of F2 of a different length containing either kringle (K) V or the protease domain (PD). We also studied rhesus monkey apo[a], which is known to contain PD but not KV. In the case of Fn, we used both an intact product and its tenth type III module (10FN-III) expressed in Escherichia coli. The binding studies carried out on microtiter plates showed that the affinity of F2 for immobilized 10FN-III was approximately 6-fold higher than that for Fn (dissociation constants = 1.75 +/- 0.31 nM and 10.25 +/- 1.62 nM, respectively). The binding was also exhibited by rhesus apo[a] and by an F2 subset containing the PD linked to an upstream microdomain comprising KIV-8 to KIV-10 and KV, inactive by itself. Competition experiments on microtiter plates showed that both Fn and 10FN-III, when in solution, are incompetent to bind F2. Together, our results indicate that F2 binds to immobilized 10FN-III more efficiently than whole Fn and that the binding can be sustained by truncated forms of F2 that contain the catalytically inactive PD linked to an upstream four K microdomain.  相似文献   

9.
Efforts to elucidate the role of lipoprotein [a] (Lp[a]) in atherogenesis have been hampered by the lack of an animal model with high plasma Lp[a] levels. We produced two lines of transgenic mice expressing apolipoprotein [a] (apo[a]) in the liver and crossed them with mice expressing human apolipoprotein B-100 (apoB-100), generating two lines of Lp[a] mice. One had Lp[a] levels of approximately 700 mg/dl, well above the 30 mg/dl threshold associated with increased risk of atherosclerosis in humans; the other had levels of approximately 35 mg/dl. Most of the LDL in mice with high-level apo[a] expression was covalently bound to apo[a], but most of the LDL in the low-expressing line was free. Using an enzyme-linked sandwich assay with monoclonal antibody EO6, we found high levels of oxidized phospholipids in Lp[a] from high-expressing mice but not in LDL from low-expressing mice or in LDL from human apoB-100 transgenic mice (P <0.00001), even though all mice had similar plasma levels of human apoB-100. The increase in oxidized lipids specific to Lp[a] in high-level apo[a]-expressing mice suggests a mechanism by which increased circulating levels of Lp[a] could contribute to atherogenesis.  相似文献   

10.
Apolipoprotein(a) [apo(a)] consists of a series of tandemly repeated modules known as kringles that are commonly found in many proteins involved in the fibrinolytic and coagulation cascades, such as plasminogen and thrombin, respectively. Specifically, apo(a) contains multiple tandem repeats of domains similar to plasminogen kringle IV (designated as KIV(1) to KIV(10)) followed by sequences similar to the kringle V and protease domains of plasminogen. The KIV domains of apo(a) differ with respect to their ability to bind lysine or lysine analogs. KIV(10) represents the high-affinity lysine-binding site (LBS) of apo(a); a weak LBS is predicted in each of KIV(5)-KIV(8) and has been directly demonstrated in KIV(7). The present study describes the first crystal structure of apo(a) KIV(7), refined to a resolution of 1.45 A, representing the highest resolution for a kringle structure determined to date. A critical substitution of Tyr-62 in KIV(7) for the corresponding Phe-62 residue in KIV(10), in conjunction with the presence of Arg-35 in KIV(7), results in the formation of a unique network of hydrogen bonds and electrostatic interactions between key LBS residues (Arg-35, Tyr-62, Asp-54) and a peripheral tyrosine residue (Tyr-40). These interactions restrain the flexibility of key LBS residues (Arg-35, Asp-54) and, in turn, reduce their adaptability in accommodating lysine and its analogs. Steric hindrance involving Tyr-62, as well as the elimination of critical ligand-stabilizing interactions within the LBS are also consequences of this interaction network. Thus, these subtle yet critical structural features are responsible for the weak lysine-binding affinity exhibited by KIV(7) relative to that of KIV(10).  相似文献   

11.
The plasma lipoprotein lipoprotein(a) [Lp(a)] comprises a low-density lipoprotein (LDL)-like particle covalently attached to the glycoprotein apolipoprotein(a) [apo(a)]. Apo(a) consists of multiple tandem repeating kringle modules, similar to plasminogen kringle IV (designated KIV1-KIV10), followed by modules homologous to the kringle V module and protease domain of plasminogen. The apo(a) KIV modules have been classified on the basis of their binding affinity for lysine and lysine analogues. The strong lysine-binding apo(a) KIV10 module mediates lysine-dependent interactions with fibrin and cell-surface receptors. Weak lysine-binding apo(a) KIV7 and KIV8 modules display a 2-3-fold difference in lysine affinity and play a direct role in the noncovalent step in Lp(a) assembly through binding to unique lysine-containing sequences in apolipoproteinB-100 (apoB-100). The present study describes the nuclear magnetic resonance solution structure of apo(a) KIV8 and its solution dynamics properties, the first for an apo(a) kringle module, and compares the effects of epsilon-aminocaproic acid (epsilon-ACA) binding on the backbone and side-chain conformation of KIV7 and KIV8 on a per residue basis. Apo(a) KIV8 adopts a well-ordered structure that shares the general tri-loop kringle topology with apo(a) KIV6, KIV7, and KIV10. Mapping of epsilon-ACA-induced chemical-shift changes on KIV7 and KIV8 indicate that the same residues are affected, despite a 2-3-fold difference in epsilon-ACA affinity. A unique loop conformation within KIV8, involving hydrophobic interactions with Tyr40, affects the positioning of Arg35 relative to the lysine-binding site (LBS). A difference in the orientation of the aromatic side chains comprising the hydrophobic center of the LBS in KIV8 decreases the size of the hydrophobic cleft compared to other apo(a) KIV modules. An exposed hydrophobic patch contiguous with the LBS in KIV8 and not conserved in other weak lysine-binding apo(a) kringle modules may modulate specificity for regions within apoB-100. An additional ligand recognition site comprises a structured arginine-glycine-aspartate motif at the N terminus of the KIV8 module, which may mediate Lp(a)/apo(a)-integrin interactions.  相似文献   

12.
Kringle-kringle interactions in multimer kringle structures.   总被引:1,自引:1,他引:0       下载免费PDF全文
The crystal structure of a monoclinic form of human plasminogen kringle 4 (PGK4) has been solved by molecular replacement using the orthorthombic structure as a model and it has been refined by restrained least-squares methods to an R factor of 16.4% at 2.25 A resolution. The X-PLOR structure of kringle 2 of tissue plasminogen activator (t-PAK2) has been refined further using PROFFT (R = 14.5% at 2.38 A resolution). The PGK4 structure has 2 and t-PAK2 has 3 independent molecules in the asymmetric unit. There are 5 different noncrystallographic symmetry "dimers" in PGK4. Three make extensive kringle-kringle interactions related by noncrystallographic 2(1) screw axes without blocking the lysine binding site. Such associations may occur in multikringle structures such as prothrombin, hepatocyte growth factor, plasminogen (PG), and apolipoprotein [a]. The t-PAK2 structure also has noncrystallographic screw symmetry (3(1)) and mimics fibrin binding mode by having lysine of one molecule interacting electrostatically with the lysine binding site of another kringle. This ligand-like binding interaction may be important in kringle-kringle interactions involving non-lysine binding kringles with lysine or pseudo-lysine binding sites. Electrostatic intermolecular interactions involving the lysine binding site are also found in the crystal structures of PGK1 and orthorhombic PGK4. Anions associate with the cationic centers of these and t-PAK2 that appear to be more than occasional components of lysine binding site regions.  相似文献   

13.
Monospecific polyclonal antibodies (MPAbs) to apoB-100 regions Cys3734 and Cys4190 were isolated by affinity chromatography using the synthetic polypeptides, Q3730VPSSKLDFREIQIYKK3746 and G4182IYTREELSTMFIREVG4198, respectively, coupled to a hydrophilic resin. Molecular modeling and fluroescence labeling studies have suggested that Cys67 located in kringle type 9 (LPaK9, located between residues 3991 and 4068 of the apo[a] sequence inferred by cDNA) of the apo[a] molecule is disulfide linked to Cys3734 of apoB-100 in human lipoprotein[a] (Lp[a]). This possibility has been further explored with MPAbs. Four species of MPAbs directed to a Cys3734 region of apoB-100 (3730–3746) were isolated from goat anti-human LDL serum by a combination of synthetic peptide (Q3730VPSSKLDFREIQIYKK3746) affinity chromatography and preparative electrophoresis (electrochromatography). MPAbs to the Cys4190 region of apoB-100, a second or alternative disulfide link-site between apo[a] and apoB-100, were also isolated using a synthetic peptide (G4182IYTREELSTMFIREVG4198) affinity resin. Results of immunoassays showed that binding of these four MPAbs to Lp[a] was significantly lower than to LDL. In contrast, MPAbs to the apoB-100 region 4182–4198 which contains Cys4190, a second or alternative disulfide link-site between apo[a] and apoB-100, displayed a less significant difference in binding to Lp[a] and LDL. These results provide additional evidence that the residues 3730–3746 of apoB-100 interact significantly with apo[a] in Lp[a], and that Cys3734 is a likely site for the disulfide bond connecting apo[a] and apoB-100.Abbreviations amino acids single letter, e.g., alanine, A, etc. - BSA bovine serum albumin - d density (g/ml) - aca -aminocaproic acid - ELISA enzyme-linked immunosorbant assay - DTT dithiothreitol - HRP horseradish peroxidase - MAb monoclonal antibody - MPAb monospecific polyclonal antibody - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - Na2EDTA sodium ethylenediaminetetraacetate - NaN3 sodium azide - TRIS (hydroxymethyl)aminomethane  相似文献   

14.
The protein component of human lipoprotein[a] consists primarily of two apolipoproteins, apo[a] and apo B-100, linked through a cystine disulfide(s). In the amino acid sequence of apo bd, Cys4057 located within a plasminogen kringle 4-like repeat sequence (3991-4068) is believed to form a disulfide bond with a specific cysteine residue in apo B-100. Our fluorescence-labeling experiments and molecular modeling studies have provided evidence for possible interactions between this apo[a] kringle type and apo B-100. The fluorescent probe, fluorescein-5-maleimide, was used in parallel experiments to label free sulfhydryl moieties in lipoprotein[a] and low-density lipoprotein (LDL). In apo B-100 of LDL, Cys3734 was labeled with the probe, but this site was not labeled in autologous lipoprotein[a]. The result strongly implicates Cys3734 of apo B-100 as the residue forming the disulfide linkage with Cys4057 of apo[a]. To explore possible noncovalent interactions between apo B-100 and apo[a], the crystallographic coordinates for plasminogen kringle 4 were used to generate molecular models of the apo[a] kringle-repeat sequence (3991-4068, LPaK9), the only plasminogen kringle 4 type repeat in apo[a] having an extra cysteine residue not involved in an intramolecular disulfide bond. The Cys4057 residue (henceforth designated as Cys67 in the LPaK9 sequence) is believed to form an intermolecular disulfide bond with a cysteine of apo B-100. In computer graphics molecular models of LPaK9, Cys67 is located on the surface of the kringle near the lysine ligand binding site. Selected segments of the LDL apo B-100 sequence that contain free sulfhydryl cysteines were subjected to energy minimization and docking with the ligand binding site and adjacent regions of the LPaK9 model. In the docking experiments, apo B-100 segment 3732-3745 (PSCKLDFREIQIYK) displayed the best fit and the largest number of van der Waals contacts with models of LPaK9. Other apo B-100 peptides with sulfhydryl cysteine were found to be less compatible when minimized with this kringle. These results support and extend previously suggested mechanisms for a complex interaction between apo[a] and apo B-100 that involve more than a simple covalent disulfide bond.  相似文献   

15.
K Ikeo  K Takahashi  T Gojobori 《FEBS letters》1991,287(1-2):146-148
Human apolipoprotein(a) has a great size heterogeneity and consists of 38 kringle domains in the amino terminal and a serine protease domain in the carboxyl terminal. All but one kringle of apolipoprotein(a) are homologous to the fourth kringle of plasminogen. However, the 38th kringle resembles the fifth kringle of plasminogen and its seems to have been deleted in simian species. The phylogenetic trees suggest that an ancestral apolipoprotein(a) may have started with a duplicate of a plasminogen type protein. It also implies that deletion of the three kringles in the amino terminus followed, and that one of the remaining two kringles was duplicated in both human and simian species and the other was processed by a deletion in simian species after species separation. Thus, the number of kringles in other mammals not yet studied may vary considerably from species to species.  相似文献   

16.
Tissue-type plasminogen activator (tPA) is a multidomain serine protease that converts the zymogen plasminogen to plasmin. tPA contains two kringle domains which display considerable sequence identity with those of angiostatin, an angiogenesis inhibitor. TK1-2, a recombinant kringle domain composed of t-PA kringles 1 and 2 (Ala(90)-Thr(263)), was produced by both bacterial and yeast expression systems. In vitro, TK1-2 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, and epidermal growth factor. It did not inhibit proliferation of non-endothelial cells. TK1-2 also inhibited in vivo angiogenesis in the chick embryo chorioallantoic membrane model. These results suggest that the recombinant kringle domain of t-PA is a selective inhibitor of endothelial cell growth and identifies this molecule as a novel anti-angiogenic agent.  相似文献   

17.
L A Miles  E F Plow 《Biochemistry》1986,25(22):6926-6933
An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [125I]EDP I, [125I]Glu-plasminogen, and [125I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [125I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and 1730 microM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region (EDP I, Glu-plasminogen, Lys-plasminogen, and the plasmin heavy chain) and did not react with those lacking an EDP I region [miniplasminogen, the plasmin light chain or EDP II (kringle 4)] or with tissue plasminogen activator or prothrombin, which also contain kringles. By immunoblotting analyses, a chymotryptic degradation product of Mr 20,000 was derived from EDP I that retained reactivity with the antibody. The high-affinity lysine binding site was equally available to the antibody probe in Glu- and Lys-plasminogen and also appeared to be unoccupied in the plasmin-alpha 2-antiplasmin complex. alpha 2-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Urokinase as a Multidomain Protein and Polyfunctional Cell Regulator   总被引:4,自引:0,他引:4  
The urokinase type plasminogen activator (urokinase) plays a pivotal role in the regulation of cell adhesion and migration during tissue remodeling. Urokinase not only specifically cleaves plasminogen and converts it into plasmin but also activates intracellular signaling upon binding to certain receptors on the cell surface. The polyfunctional properties of this protein are associated with its three-domain structure as follows: the C-terminal proteolytic domain containing the serine protease active center, the central kringle domain, and the N-terminal domain homologous to epidermal growth factor. This review considers functional properties of urokinase and of its fragments generated on the cell surface as a result of proteolytic processing. This review will discuss the mechanisms of urokinase-mediated regulation of cellular function upon binding to membrane receptors.  相似文献   

19.
The risk factor, Lipoprotein(a), [(Lp(a)], has been measured in numerous clinical studies by a variety of immunochemical assay methods. It is becoming apparent that for many of these assays antibody specificity towards the apolipoprotein(a) [apo(a)] repetitive component [the kringle 4 - type 2 repeats] and apo(a) size heterogeneity can significantly affect the accuracy of serum Lp(a) measurements. To address this issue, we investigated whether our current in house Lp(a) [Mercodia] assay showed such bias compared to a recently available assay [Apo-Tek], claiming to possess superior capability for isoform-independent measurement of Lp(a). Levels of Lipoprotein(a) by both Apo-Tek and Mercodia assays correlated inversely with apo(a) isoform sizes. No significant differences were observed between assays in ranges of Lp(a) concentration within each isoform group. The Mercodia assay exhibited similar isoform-independent behaviour to that of Apo-Tek for e quantitation of serum Lipoprotein(a). Essentially identical results were obtained by the two methods, suggesting that Mercodia assay's capture monoclonal antibody also (as is the case for Apo-Tek) does not recognize the kringle 4-type 2 repetitive domain of apo(a). Correlation of Lp(a) concentrations in patient specimens between Apo-Tek and Mercodia assays showed good agreement, although an overall higher degree of imprecision and non-linearity was noted for the Apo-Tek procedure. A change-over to the Apo-Tek assay would therefore not improve on our current assessment of risk contribution from Lp(a) for atherosclerotic vascular disease in individuals with measurable levels of circulating Lipoprotein(a).  相似文献   

20.
Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号