首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.  相似文献   

2.
Linkage of osteoporosis to chromosome 20p12 and association to BMP2   总被引:2,自引:0,他引:2       下载免费PDF全文
Osteoporotic fractures are a major cause of morbidity and mortality in ageing populations. Osteoporosis, defined as low bone mineral density (BMD) and associated fractures, have significant genetic components that are largely unknown. Linkage analysis in a large number of extended osteoporosis families in Iceland, using a phenotype that combines osteoporotic fractures and BMD measurements, showed linkage to Chromosome 20p12.3 (multipoint allele-sharing LOD, 5.10; p value, 6.3 × 10−7), results that are statistically significant after adjusting for the number of phenotypes tested and the genome-wide search. A follow-up association analysis using closely spaced polymorphic markers was performed. Three variants in the bone morphogenetic protein 2 (BMP2) gene, a missense polymorphism and two anonymous single nucleotide polymorphism haplotypes, were determined to be associated with osteoporosis in the Icelandic patients. The association is seen with many definitions of an osteoporotic phenotype, including osteoporotic fractures as well as low BMD, both before and after menopause. A replication study with a Danish cohort of postmenopausal women was conducted to confirm the contribution of the three identified variants. In conclusion, we find that a region on the short arm of Chromosome 20 contains a gene or genes that appear to be a major risk factor for osteoporosis and osteoporotic fractures, and our evidence supports the view that BMP2 is at least one of these genes.  相似文献   

3.
4.
Somatic and germline sex determination pathways have diverged significantly in animals, making comparisons between taxa difficult. To overcome this difficulty, we compared the genes in the germline sex determination pathways of Caenorhabditis elegans and C. briggsae, two Caenorhabditis species with similar reproductive systems and sequenced genomes. We demonstrate that C. briggsae has orthologs of all known C. elegans sex determination genes with one exception: fog-2. Hermaphroditic nematodes are essentially females that produce sperm early in life, which they use for self fertilization. In C. elegans, this brief period of spermatogenesis requires FOG-2 and the RNA-binding protein GLD-1, which together repress translation of the tra-2 mRNA. FOG-2 is part of a large C. elegans FOG-2-related protein family defined by the presence of an F-box and Duf38/FOG-2 homogy domain. A fog-2-related gene family is also present in C. briggsae, however, the branch containing fog-2 appears to have arisen relatively recently in C. elegans, post-speciation. The C-terminus of FOG-2 is rapidly evolving, is required for GLD-1 interaction, and is likely critical for the role of FOG-2 in sex determination. In addition, C. briggsae gld-1 appears to play the opposite role in sex determination (promoting the female fate) while maintaining conserved roles in meiotic progression during oogenesis. Our data indicate that the regulation of the hermaphrodite germline sex determination pathway at the level of FOG-2/GLD-1/tra-2 mRNA is fundamentally different between C. elegans and C. briggsae, providing functional evidence in support of the independent evolution of self-fertile hermaphroditism. We speculate on the convergent evolution of hermaphroditism in Caenorhabditis based on the plasticity of the C. elegans germline sex determination cascade, in which multiple mutant paths yield self fertility.  相似文献   

5.
6.
TheGPX2gene codes for GSHPx-GI, a glutathione peroxidase whose mRNA is readily detectable in the gastrointestinal tract. AlthoughGPX2is a single gene in humans, there are two genes in the mouse genome with homology toGPX2.By analyzing a panel of mouse interspecies DNA from the Jackson Laboratory's backcross resource, we have chromosomally mapped these two genes. One was mapped to the central region of mouse chromosome 12 betweenD12Mit4andD12Mit5,nearfosandTgfb3.This region is homologous to human 14q24.1, where humanGPX2has been mapped, and most likely represents the functional mouseGpx2gene. The otherGpx2-like gene was mapped to mouse chromosome 7 betweenPcsk3andHbb.We have isolated the latter gene from a P1 phage library. Its pseudogene nature is revealed by the sequence analysis: (a) it is intronless; (b) it has a single nucleotide deletion in the coding region; and (c) it has a poly(A) tail at its 3′-untranslated region.  相似文献   

7.
A DNA segment D20S5 isolated from a chromosome 19/20 flow-sorted library was shown to identify two restriction fragment length polymorphisms (RFLPs) with MspI and PvuII. The probe was localized by hybridization in situ to 20p12, the putative site of an interstitial deletion in some MEN 2A and 2B patients. Linkage of the D20S5 and MEN 2A loci was excluded at theta less than or equal to .13 using two large MEN 2A kindreds. These data suggest that the MEN 2A locus may not lie within 20p12 as previously suggested.  相似文献   

8.
The gene encoding the somatostatin receptor subtype designated as SSTR5 was mapped to human chromosome 20p11.2 by using fluorescence in situ hybridization to metaphase chromosomes. Fluorescence in situ hybridization using a probe for SSTR5 in combination with probes for neuroendocrine convertase-2 (NEC2), thrombomodulin (THBD), and brain glycogen phosphorylase (PYGB) established a physical order for these loci of 20pter-NEC2-SSTR5-THBD-PYGB-cen.  相似文献   

9.
The genes encoding members of the wingless-related MMTV integration site (WNT) and fibroblast growth factor (FGF) families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9) and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch— Sry in the case of mammals—is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways.  相似文献   

10.
11.
12.
13.
14.
Synesthesia, a neurological condition affecting between 0.05%–1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception.  相似文献   

15.
16.
Linkage of familial Hibernian fever to chromosome 12p13.   总被引:2,自引:0,他引:2  
Autosomal dominant periodic fevers are characterized by intermittent febrile attacks of unknown etiology and by recurrent abdominal pains. The biochemical and molecular bases of all autosomal dominant periodic fevers are unknown, and only familial Hibernian fever (FHF) has been described as a distinct clinical entity. FHF has been reported in three families-the original Irish-Scottish family and two Irish families with similar clinical features. We have undertaken a genomewide search in these families and report significant multipoint LOD scores between the disease and markers on chromosome 12p13. Cumulative multipoint linkage analyses indicate that an FHF gene is likely to be located in an 8-cM interval between D12S77 and D12S356, with a maximum LOD score (Z max) of 3.79. The two-point Z max was 3.11, for D12S77. There was no evidence of genetic heterogeneity in these three families; it is proposed that these markers should be tested in other families, of different background, that have autosomal dominant periodic fever, as a prelude to identification of the FHF-susceptibility gene.  相似文献   

17.
cDNAs encoding the human homolog of BAG1, a Bcl-2-binding protein with anti-apoptotic function, were cloned. DNA sequence analysis of humanBAG1cDNAs predicts a protein with an additional 55 amino acids at its NH2-terminus compared to the mouse protein. Immunoblot assays using monoclonal antibodies raised against bacterially produced h-BAG1 protein confirmed the larger size of the human protein (34 kDa) compared to mouse. PCR analysis of DNA from human × rodent somatic cell hybrids using human BAG1-specific primers localized the gene to human chromosome 9. Cosmid clones of h-BAG1 were obtained and used for fluorescencein situhybridization analysis of normal metaphase chromosomes, thus localizing h-BAG1 to 9p12, a region associated with hereditary disorders that may involve developmental dysregulation of programmed cell death.  相似文献   

18.
The p53 signaling pathway works as a potent barrier to tumor progression. Two single nucleotide polymorphisms (SNPs) in the gene loci of p53 pathway, p53 codon 72 Arg72Pro and MDM2 SNP309 (T>G), have been shown to cause perturbation of p53 function, but the effect of the two SNPs on the risk of hepatocellular carcinoma (HCC) remains inconsistent. This study investigated the influence of combined p53 Arg72Pro and MDM2 SNP309 on the risk of developing HCC in patients with chronic hepatitis B virus infection, and evaluated the significance of the two combined SNPs on patient prognosis. In total, 350 HCC patients, 230 non-HCC patients, and 96 healthy controls were genotyped for the p53 Arg72Pro and MDM2 SNP309. The combined p53 Pro/Pro and MDM2 G/G genotype was significantly associated with HCC risk (P= 0.047). Multivariate analysis indicated that combined p53 Pro/Pro and MDM2 G/G genotype was an independent factor affecting recurrence and survival (P<0.05). Patients with combined p53 Pro/Pro and MDM2 G/G genotypes had a poorer prognosis than other genotypes, P<0.01 for both disease-free survival (DFS) and overall survival (OS). DFS and OS rates also differed significantly between Barcelona Clinic Liver Cancer (BCLC) stage A patients with combined p53 Pro/Pro and MDM2 G/G and other genotypes (P<0.05). Thus, the combined p53 Pro/Pro and MDM2 G/G genotype is associated with increased risk of developing HCC and is an independent adverse prognostic indicator in early stage HCC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号