首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyclonal antisera to the alpha and pi isoenzymes of glutathione S-transferase have been used in immunohistochemical studies of developing human lung. In utero expression of the pi set was down-regulated in distal airway cells and the first appearance of pi-negative cells coincided with phenotypic differentiation. In contrast, in the early phase of fetal lung organ culture pi isoenzyme was detected in all differentiated epithelial cells and only as culture progressed did focal negativity develop. The alpha set showed no developmental changes in utero or in organ culture.  相似文献   

2.
Summary Human fetal kidney explants can be maintained during 5 days in Leibovitz’s L15, a basic serum-free medium. Because culture conditions are minimal for growth and differentiation, DNA synthesis drastically decreases during the first 48 h, but stabilizes thereafter. The addition of insulin plus transferrin significantly restores this important cellular function in kidneys of fetuses younger than 16 wk. However, renal explants from older fetuses are more difficult to culture: they respond less to growth factors and are more prone to necrosis. The objective of this study was to verify the influence of tetracycline, an antibiotic with anti-collagenase potential, on cultured kidney explants aged 17 to 20 wk. The addition of 20μg/ml tetracycline did not influence DNA synthesis nor the effectiveness of insulin plus transferrin on cell proliferation. Nor did it change the activities of alkaline phosphatase and γ-glutamyltransferase, two enzymic markers of brush border differentiation. After 5 days in L15 alone, explants often showed necrosis and an important reduction in both weight and volume. Insulin plus transferrin significantly restored these parameters to control values observed at Day 0, but evidence of necrosis was still present. Tetracycline alone markedly reduced explant necrosis resulting in a significant increase in weight and volume. The effectiveness of insulin plus transferrin on explant morphometry was not improved when tetracycline was added as third factor. These results indicate that insulin plus transferrin restores explant mass through cell proliferation, whereas tetracycline does so possibly through a reduction in extracellular matrix degradation. The two effects are not additive in cultured mid-term fetal kidneys.  相似文献   

3.
Human esophageal, tracheal, and pancreatic ductal fragments were collected at autopsy after a postmortem interval of 12 hours or less and maintained in explant organ culture for 30 days. The viability and growth of the explants was assessed by morphology, LDH enzyme release, and cellular outgrowth. The viability and growth of the bronchial explant epithelium was directly related to the postmortem interval. Esophageal epithelial regeneration followed the desquamation of the superficial cell layers. Pancreatic epithelia appeared to grow more slowly and with less outgrowth than the other tissues. Epithelial cell growth along the explant surface and onto the culture dish appeared to proceed through the well-characterized process that follows cell injury, i.e., flattening, migration, replication, and differentiation. Thus, sufficient numbers of viable epithelial cells capable of regeneration were present in routine autopsy epithelium, but there was considerable variation from tissue to tissue and case to case. The most effective and accurate approach to follow when evaluating and predicting the growth and viability of these explants is by using a combination of morphologic, enzymatic and biologic assays. Errors in the interpretation of viability are possible when only one assay method is utilized. These tissues grown in explant organ culture are suitable for studies on the mechanism and response of epithelia to cell injury, recovery and wound healing.Abbreviations 4F-1G 4% formaldehyde, 1% glutaraldehyde - HIFBS heat inactivated fetal bovine serum - IA immediate autopsy - LDH lactate dehydrogenase - OsO4 osmium tetroxide - RA routine autopsy  相似文献   

4.
Summary Culture conditions for maintaining first trimester human placenta in organ culture, which enhance the secretion of human chorionic gonadotropin (hCG), are described. Nutrient medium, oxygen tension and Gelfoam support matrix infuence the synthesis of hCG by these cultures. Placental tissue remained viable for the duration of experiments (12 days) as judged by the incorporation of tritiated thymidine into DNA and the lack of release of incorporated [125Iiododeoxyuridine. Optimal conditions for hCG synthesis in placental organ culture included an atmosphere of 95% air and 5% CO2 (approximately 20% O2), CMRL 1066 medium containing fetal human or bovine serum, insulin, hydrocortisone and retinal acetate. Multiple pieces of placenta could be cultured in the same dish with an additive effect on hCG secretion. The functional responsiveness of these placental cultures was demonstrated by modulation of hCG synthesis with theophylline and 3′5′ dibutyryl cyclic AMP. Presented in part at the meeting of the American Association for Cancer Research, April 1978. This work is being submitted in partial fulfillment of the Ph.D. requirements in the Department of Biology, Catholic University of America.  相似文献   

5.
Metanephric development in serum-free organ culture   总被引:4,自引:0,他引:4  
Summary A new mouse metanephric organ culture system has been developed to study mammalian renal development. The system permits in vitro organotypic differentiation in a serum-free, hormone supplemented medium consisting of Dulbecco’s minimal essential medium (MEM) and Ham’s F12 medium supplemented with insulin, 5 μg/ml; PGE1, 25 ng/ml; T3, 3.2 pg/ml; hydrocortisone, 5 μg/ml; and transferrin, 5 μg/ml. In this system, metanephric development continues morphologically beyond the S-shaped tubule stage. A well differentiated proximal tubule forms with a well defined brush border, specialized intercellular connections, and an apical endocytic network. In addition, a unique devascularized glomerulus, with highly differentiated podocytes surrounding areas of basement membrane, forms entirely from epithelial elements. The present organ culture model goes beyond the limitations of previously described systems in that it does not require separation of nephrogenic blastema from ureteric bud, nor require animal serum or nonspecific tissue extracts for metanephric development. The model is thus suited for morphological, biochemical, and endocrinological study of normal and abnormal renal organogenesis.  相似文献   

6.
Hamster early two-cell embryos developed to the expanded blastocyst stage within the isolated mouse ampulla maintained in organ culture system. Mouse ampullae isolated at different times after treating the mice with human chorionic gonadotropin (hCG) (0–72 h) or pregnant mare's serum gonadotropin (PMSG) (30–32 h) were flushed with culture medium, and hamster early two-cell embryos were introduced into these ampullae. Mouse ampullae isolated at 14–32 h after hCG injection were more favorable for the development of the embryos than those isolated at 70–72 h. When mouse ampullae were isolated 30–32 h after hCG or PMSG treatment, 39% of the cultured eggs developed, some of them to the expanded blastocyst stage after additional culture for 65–70 h. These results indicate that unknown oviductal factors stimulate the development of hamster early two-cell embryos, and these factors are under the control of hCG or PMSG. In addition, these factors are common to the mouse and hamster.  相似文献   

7.
Summary Explants of fetal rat liver maintained in organ culture lost about 40% of their mass in 42 hr of incubation as a result of decrease in blood cells and hepatocytes. Proteins from the cytosol and particulate elements of the tissue were found in the culture medium. About 60% of this protein was degraded to peptides during culture. The transfer of malate and lactate dehydrogenases from tissue to medium paralleled that of proteins. Glutamate dehydrogenase was lost from the mitochondria and in part leaked through the cell membrane into the medium. Net loss of activity of the three enzymes occurred, probably as a consequence of proteolytic degradation. Of 12 enzymes in liver tissue, the specific activities of eight—soluble malate dehydrogenase, glutamate dehydrogenase, succinate dehydrogenase, phosphopyruvate carboxylase, hexosediphosphatase, glucose-6-phosphatase, tyrosine, aminotransferase, and alanine aminotransferase—were unchanged or increased. Glycogen synthetase, aspartate aminotransferase, pyruvate kinase, and lactate dehydrogenase decreased. Although changes in membrane permeability may have had some influence on the results reported, the predominant effect was due to loss of protein from tissue as a result of discharge of total contents of some of the cells into the medium. The residual explanted tissue retained its structural integrity. It is concluded that fetal rat liver in organ culture provides a suitable model system for controlled studies with this organ in vitro. This investigation was supported by grants from the National Institute of Child Health and Human Development (RO 1 HD09715), National Cancer Institute (CA 14194), and United States Public Health Service General Research Support Grant RR 5589.  相似文献   

8.
An improved organ culture method for adult mammalian lung   总被引:1,自引:0,他引:1  
Summary An improved method for maintaining adult rat lung in submerged organ culture is described in which the alveoli were inflated with agar and 200-μm-thick hand-cut sections were mounted in Rose chambers. The conventional single-compartmented Rose culture chamber was modified by adding a second chamber separated from the first by a gaspermeable membrane. One compartment functioned as an air reservoir and the other housed the explants submerged in nutrient medium. Visking dialysis membrane used underneath the explants prevented cell outgrowth and facilitated the exchange of nutrients and waste products at the glass-tissue interface. Because of the excellent optical properties of the Rose chamber and the thinness of the explants, individual cell types can be identified in the living tissue. The explants were studied with time-lapse cinematography, light microscopy, histology, and with erythrosine B for dye exclusion. With this modified system the functional life span of the explants was increased from 1 week to 1 month. This study was supported by NHLBI Grant No. HL15098-05.  相似文献   

9.
Summary Lung organ culture has been a widely used system for studying differentiation and maturation of alveolar epithelium through various culture conditions. The purpose of this work was to carefully characterize in vitro lung biochemical diffeentiation through isolation of surfactant fraction from tissue and to search for optimal culture conditions. Fetal rat lung was explanted on the 18th gestational day for studying glycogen storage, and on the 20th gestational day for studying surfactant accretion, and cultivated for 48 h. Morphologic differentiation was studies byelectron microscopy tissue explanted on the 17th or 18th gestational days and cultivated for various times. Glycogen storage was greater on fluid medium, although less than occurring in vivo. Cellular integrity and surfactant accumulation were maximal on a semisolid medium containing 0.5% agar. Use of O2-CO2 instead of air-CO2 for gassing the explants slighlty decreased phospholipid accumulation. Among media used in previous lung culture studies, Waymouth MB 752/1 was the only one to allow net glycogen accumulation in vitro. The most favorable media for surfactant phospholipid accretion were Waymouth MB 752/1, Eagle’s minimum essential and its Dulbeccco’s modification, CMRL 1066, and NCTC 109. They allowed a 12- to 14-fold increase of surfactant fraction phospholipids in vitro, which is similar to the increase occurring in vivo during the same peiod. Ham’s F10 and F12 media allowed a six fold increase. RPMI 1640 and medium 199 (M199) allowed only a three fold increase. Phospholipid concentration in nonsurfactant fraction only doubled during culture, and differences between various media were much less marked. DNA concentration changed little during culture. Morphologic differentiation of epithelial cells was advanced as compared with in vivo timing in a medium allowing maximal surfactant accretion (Waymouth MB 752/1) but not in a medium allowing low surfactant increase (RPMI 1640). The possible role of compositional differences between media is discussed.  相似文献   

10.
Campylobacter jejuni is an important food-borne pathogen. However, relatively little is understood regarding its pathogenesis, and research is hampered by the lack of a suitable model. Recently, a number of groups have developed assays to study the pathogenic mechanisms of C. jejuni using cell culture models. Here, we report the development of an ex vivo organ culture model, allowing for the maintenance of intestinal mucosal tissue, to permit more complex host-bacterium interactions to be studied. Ex vivo organ culture highlights the propensity for C. jejuni to adhere to mucosal tissue via the flagellum, either as discrete colonies or as multicellular units.  相似文献   

11.
Human fetal lung tissue obtained during the second trimester was cultured as organ culture with or without cortisol. The effect of cortisol on the phospholipid metabolism, as related to the appearance of osmiophilic lamellar bodies and the localisation of newly incorporated choline, was studied. In cortisol-treated explants, the concentration of saturated lecithins and the incorporation of (Me-3H)-choline into saturated lecithins increases significantly concomitantly with an increased number of osmiophilic lamellar bodies. The labelled choline is predominantly associated with these bodies. The obtained results indicate that cortisol accelerates the synthesis of pulmonary surfactant in the human fetal lung as early as in the second trimester.  相似文献   

12.
Summary A new technique for organ culture which uses plastic culture chambers and the advantages of the cellophane-sheet technique is described with the results of a study of cultivations of fetal mouse liver. Two chambers, each containing cells, were placed in gas permeable roller tubes and rotated at 0.1 rpm in a CO2-air gassed incubator. The fetal mouse liver cells developed electron microscopic features similar to those of the in vivo adult liver by 9 days of cultivation. The albumin content and tyrosine aminotransferase (TAT) activity were detected in the cultivated liver. TAT activity was further induced by prednisolone. These results indicate the potential of this culture method for the study of physiological and pathological processes. This work was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan and Science Technology Agency, Japan.  相似文献   

13.
Long-term organ culture of mouse mammary gland   总被引:1,自引:0,他引:1  
Summary A method for maintaining mouse mammary gland in organ culture for periods of at least 30 days is described. Strips of the number four mammary glands were cultured in individual tubes while fully submerged in Medium 199 supplemented with insulin, aldosterone, ovine prolactin and bovine growth hormone. Exchange processes were aided by slowly rotating the tubes during culture. Mammary tissue from midpregnant BALB/c and virgin GR/A mice was induced to undergo lobulo-alveolar development, secrete and remain differentiated and metabolically active for the period of culture. Cells of both the ductal and alveolar epithelium continued to synthesize DNA and divide. The submerged roller-tube culture allows the use of larger pieces of tissue than can be accommodated in static culture, and the technique may prove applicable to the culture of a variety of tissues.  相似文献   

14.
Summary Segments of human thoracic aorta were maintained in long-term explant culture for 18 weeks in serum-supplemented medium. The aortas were grossly normal in appearance, and random samples fixed for light microscopy prior to culture revealed a normal morphology. The intima contained no more than five layers of smooth muscle cells. After 7 days in culture, the intima was noticeably thicker than the uncultured segments. The increased thickness was due to proliferating smooth muscle cells and production of extracellular material. After several months in culture, extracellular material consisting of collagen and flocculent material was present in areas resembling atherosclerotic fibrous plaques. A peripheral growth, which formed around the explant, was composed of fibroblastlike cells and added to the overall thickness of the intima. However, aortic segment maintained for up to 2 months in serum-free culture medium showed no cellular proliferation. This study demonstrates that changes resembling early stages of atherosclerosis occur in human aortas maintained in explant culture using routine culture procedures. Supported in part by the Pangborn Fund and the Graduate School of the University of Maryland. This is publication 443 from the Cellular Pathobiology Laboratory.  相似文献   

15.
Whole retinae from Midas cichlids Cichlasoma citrinellum were maintained successfully in superfusion culture for 21 days post-removal and continued to exhibit normal light- and circadian-driven cone movements.  相似文献   

16.
The development of the fetal lung is regulated by fibroblast-type-II cell communications which involve fibroblast pneumonocyte factor (FPF). FPF production is positively regulated by glucocorticoids and negatively regulated by dihydrotestosterone (DHT) and transforming growth-factor beta (TGF-beta). We studied whether DHT or TGF-beta affected other steps in the process of lung maturation, by studying how the developing lung in organ culture would respond to exogenously supplied FPF after DHT or TGF-beta exposure. Fetal rabbit (day 19 of gestation) lung organ cultures were prepared and cultured in the presence of cortisol, DHT or TGF-beta. After seven days, the media were replaced with serum-free medium containing either cortisol or FPF conditioned medium. The incorporation of [14C]glycerol into surfactant lamellar body DSPC was studied over 24 h as the index of surfactant synthesis. Results were compared to simultaneous control cultures. Treatment had no significant effect on tissue protein concentration or on the efficiency of lamellar body recovery. Cortisol stimulated baseline incorporation of glycerol into DSPC. This was inhibited by DHT, such that DHT plus cortisol treatment was no different from untreated controls. FPF stimulated the incorporation of glycerol into DSPC, and did so even after culture treatment with DHT. Cultures treated with TGF-beta exhibited glycerol incorporation similar to untreated controls. After TGF-beta exposure, FPF did not stimulate glycerol incorporation into DSPC. We conclude that DHT interferes with progression of lung development by delaying the appearance of FPF production by the fibroblast. TGF-beta, on the other hand, inhibits other elements of lung maturation besides FPF production. We speculate that TGF-beta interferes with type-II cell development such that the cell cannot respond to FPF.  相似文献   

17.
Summary Differentiation-arrested lung cell cultures were developed from fetal rats of various gestational ages. In contrast to previously published observations with cultures in a pO2 of ∼142 mm Hg, cultures developed in a pO2 of ∼30 mm Hg, close to the normal fetal arterial pO2, have improved plating efficiency and a slightly increased growth rate. They did not, however, show gestation-dependent increases of choline incorporation into phospholipids, nor did immature lung cell cultures respond to dexamethasone or triiodothyronine, singly or in combination, by increased choline incorporation into saturated lecithin. The incorporation of choline and glycerol into lipids suggested a mature rate of lipid synthesis by immature cultures at a pO2 ∼30 mm Hg, despite preservation of an immature morphology. Electron microscope observations revealed no gross differences between immature cultures developed at either pO2. The cellular mechanisms underlying these differences are unclear but suggest that oxygen tension may significantly influence results obtained with in vitro studies of lipid synthesis by immature lung. This work was supported by grants from the Medical Research Council of Canada, the Ontario Thoracic Society, and the Physicians' Services Incorporated Foundation.  相似文献   

18.
Summary In order to define humoral growth factors which may regulate mammalian renal development, the growth requirements of fetal metanephric organogenesis were studied in serum-free murine organ culture. Metanephric growth, determined by cell proliferation and protein content, and metanephric differentiation, determined morphometrically as epithelial glomerular formation, were compared and contrasted following 144 hours of organ culture incubation in basal medium, basal medium supplemented with 10% fetal bovine serum, and basal medium supplemented with various combinations of growth factors. The basal medium was composed of equal volumes of Dulbecco's modified Eagle's medium and Hams' F-12 medium. Five humoral growth factors were studied in the following concentrations: selenium, 6.8×10−9 M; insulin, 8.3×10−7 M; triiodothyronine, 2×10−9 M; transferrin, 6.2×10−8 M; and prostaglandin E1, 7.1×10−8 M. Results showed that transferrin and prostaglandin E1 were necessary for optimal growth in the system and that prostaglandin E1 was necessary for maximal metanephric differentiation. Such data provide guidelines for the creation of serum-free medium for future fetal renal cell and tissue culture systems, and provide insight into the factors which may regulate normal and abnormal renal embryogenesis and the reparative processes of renal hyperplasia and hypertrophy which follow renal injury. A preliminary report of this work was presented at the Ninth International Congress of Nephrology, Los Angeles, June 1984. These studies were supported in part by Basil O'Connor Starter Research Grant 5-349 from the March of Dimes Birth Defects Foundation and New Investigator Research Award I-R23-AM34891-01 from the National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases of the National Institutes of Health (Both to Dr. Avner). Editor's Statement The determination of effects of extracellular components on the introduction and maintenance of differentiation is an area for which serum-free culture techniques are particularly suited. The approaches described in this report utilize morphometric techniques to quantitate differentiation in serum-free fetal organ culture in addition to standard methodologies for assessing growth. The purely epithelial nature of the cultures used in these studies also provides some interesting advantages in the design of experiments aimed, at determining the importance of cell-cell interactions at various stages in the differentiative process. David W. Barnes  相似文献   

19.
Summary A method of perfusion organ culture is described in which explants cultured at the airmedium interface are bathed by a continuous flow of nutrient medium. Morphological studies on the fetal rat lung indicate that explant development in this system is comparable to that obtained using standard organ-culture dishes. Medium supply is easily manipulated and continuous sampling of the effluent stream is possible without disturbing the immediate explant environment. The basic design facilitates secretory-response studies on cultured organ explants as demonstrated by a study of glucose-stimulated insulin release by the neonatal rat pancreas. This work was supported by U. S. Public Health Service Training Grant No. GM 00114.  相似文献   

20.
Adult Syrian Golden hamster alimentary tract maintained as explants in organ culture was studied using the model system for hamster pancreas described by Resau et al. (1983a). Explants of esophagus, stomach, duodenum and colon were maintained in organ culture on Gelfoam® sponge rafts in a high-oxygen atmosphere with serum-supplemented CMRL-1066 medium. All of the tissues were observed to show evidence of sublethal acute cell injury during the first several days of culture. Subsequently, the epithelial tissues recovered from this injury, repopulated the denuded areas of the explants and replicated within the sponge matrix. Explants were maintained in a differentiated state for 30+ days and sampled for morphology to examine the process of cell injury, repair, differentiation and replication which occurs in mucosal epithelia. The percentage of basement membrane covered by epithelia in the explants from various tissues was compared to the level of LDH in the media to reveal the relationship between viability determined by biochemical and by morphological methods. Restitution of the mucosal surface occurred in all of the explants. We conclude that adequate populations of replicating cells are maintained within the epithelium of the hamster alimentary tract tissues in vitro so that restitution can occur through migration and subsequent differentiation of the epithelial cells within the mucosa of the explants.Abbreviations 4F-1G 4% formaldehyde 1% glutaraldehyde fixative - LDH lactate dehydrogenase - OsO4 osmium tetroxide - PAS/PLH periodic acid, periodic acid Shiff lead hematoxylin stain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号