首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cobalt and copper complexes with o-phenantroline on the respiratory activity of mitochondria from pea sprouts and submitochondrial particles from bovine heart and on the oxidative phosphorylation in mitochondria were studied. The catalytic activity of the complexes in several components of the respiratory chain autooxidation reactions was investigated. It was shown that the bis (o-phenantroline) cobalt (II) chloride complex is more active in exidation of NADH. The tris (o-phenantroline) cobolt (III) perchlorate complex stimulates the respiratory activity of mitochondria and submitochondrial particles. Possible localization of the effect of this complex was postulated. The (o-phenantroline) copper chloride complex completely inhibits the succinate-dependent respiration of submitochondrial particles and causes disturbances in oxidative phosphorylation of mitochondria.  相似文献   

2.
1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with three or four sites of phosphorylation in rat heart pyruvate dehydrogenase complex. 5. It is suggested that phosphorylation of sites additional to an inactivating site may inhibit the conversion of inactive complex into active complex by the phosphatase in heart mitochondria from alloxan-diabetic or 48h-starved rats or in mitochondria incubated for 6min with respiratory substrates.  相似文献   

3.
An immunodetection study of protein tyrosine phosphatase 1B (PTP-1B), SHP-2, and Src in isolated mitochondria from different rat tissues (brain, muscle, heart, liver, and kidney) revealed their exclusive localization in the brain. Given this result, we sought whether mitochondria respond to ATP and to the general tyrosine phosphatase inhibitor orthovanadate and found little or no change in the tyrosine phosphorylation profile of mitochondria from muscle, heart, liver, and kidney. In contrast, ATP induced an enhancement in the tyrosine-phosphorylated protein profile of brain mitochondria, which was further greatly enhanced with orthovanadate and which disappeared when Src was inhibited with two inhibitors: PP2 and PP1. Importantly, we found that in brain mitochondria, ATP addition induced Src autophosphorylation at Tyr-416 in its catalytic site, leading to its activation, whereas the regulatory Tyr-527 site remained unphosphorylated. Functional implications were addressed by measurements of the enzymatic activity of each of the oxidative phosphorylation complexes in brain mitochondria in the presence of ATP. We found an increase in complex I, III, and IV activity and a decrease in complex V activity, partially reversed by Src inhibition, demonstrating that the complexes are Src substrates. These results complemented and reinforced our initial study showing that respiration of brain mitochondria was partially dependent on tyrosine phosphorylation. Therefore, the present data suggest a possible control point in the regulation of respiration by tyrosine phosphorylation of the complexes mediated by Src auto-activation.  相似文献   

4.
Rhizopus stolonifer (Ehrenb.:Fr.) Vuill mitochondria contain the complete system for oxidative phosphorylation, formed by the classical components of the electron transport chain (complexes I, II, III, and IV) and the F1F0-ATP synthase (complex V). Using the native gel electrophoresis, we have shown the existence of supramolecular associations of the respiratory complexes. The composition and stoichiometry of the oxidative phosphorylation complexes were similar to those found in other organisms. Additionally, two alternative routes for the oxidation of cytosolic NADH were identified: the alternative NADH dehydrogenase and the glycerol-3-phosphate shuttles. Residual respiratory activity after inhibition of complex IV by cyanide was inhibited by low concentrations of n-octyl gallate, indicating the presence of an alternative oxidase. The K0.5 for the respiratory substrates NADH, succinate, and glycerol-3-phosphate in permeabilized cells was higher than in isolated mitochondria, suggesting that interactions of mitochondria with other cellular elements might be important for the function of this organelle.  相似文献   

5.
1. Evidence is given for three sites of phosphorylation in the alpha-chains of the decarboxylase component of purified rat heart pyruvate dehydrogenase complex, analogous to those established for procine and bovine complexes. Inactivation of rat heart complex was correlated with phosphorylation of site 1. Relative initial rates of phosphorylation were site 1 greater than site 2 greater than site 3. 2. Methods are described for measurement of incorporation of 32Pi into the complex in rat heart mitochondria oxidizing 2-oxoglutarate + L-malate (total, sites 1, 2 and 3). Inactivation of the complex was related linearly to phosphorylation of site 1 in mitochondria of normal or diabetic rats. The relative initial rates of phosphorylation were site 1 greater than site 2 greater than site 3. Rates of site-2 and site-3 phosphorylation may have been closer to that of site 1 in mitochondria of diabetic rats than in mitochondria of normal rats. 3. The concentration of inactive (phosphorylated) complex was varied in mitochondria from normal rats by inhibiting the kinase reaction with pyruvate at concentrations ranging from 0.15 to 0.4 mM. The results showed that the concentration of inactive complex is related linearly to incorporation of 32Pi into site 1. Inhibition of 32Pi incorporations with pyruvate at all concentrations over this range was site 3 greater than site 2 greater than site 1. 4. With mitochondria from diabetic rats, pyruvate (0.15-0.4 mM) inhibited incorporation of 32Pi into site 3, but it had no effect on the concentration of inactive complex or on incorporations of 32Pi into site 1 or site 2. It is concluded that site-3 phosphorylation is not required for inactivation of the complex in rat heart mitochondria. 5. Evidence is given that phosphorylation of sites 2 and 3 may inhibit reactivation of the complex by dephosphorylation in rat heart mitochondria.  相似文献   

6.
In the Langendorff heart, lipolysis is arrested when glycogenolysis is inhibited by the addition of 5-gluconolactone. Glucose partially overcomes the inhibition as well as uncoupling of oxidative phosphorylation by dinitrophenol. In isolated fat cells hormone-sensitive lipolysis is also inhibited by glycogenolysis inhibition and in these cells also, glucose addition overcomes the inhibition. In fat cells, uncoupling of oxidative phosphorylation does not stimulate lipolysis, probably because of the relatively low concentration of mitochondria in white adipose tissue. The data are interpreted that both in heart and adipose tissue cells, the removal of fatty acids produced by the endogenous lipase is the main stimulus for lipolysis. Attempts to generate in fat cells glycerol-3-phosphate by glycerogenesis from pyruvate or lactate led to the observation that not only these latter anions, but also propionate and acetate strongly stimulate lipolysis. It suggests that long-chain fatty acid removal from fat cells may be stimulated by anion exchange.  相似文献   

7.
Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+ phosphate). ATP + Mg2+ together, but not singly, prevents the inhibitory action of Ca2+. Neither AMP, GTP, GDP, nor any other nucleoside 5'-triphosphate or 5'-diphosphate could replace ATP in this effect. Phosphorylating respiration on NAD(NADP)-linked substrates was much more susceptible to the inhibitory effect of intramitochondrial Ca2+ than succinate-linked respiration. Significant inhibition of oxidative phosphorylation is given by the endogenous Ca2+ present in freshly isolated tumor mitochondria. The phosphorylating respiration of permeabilized Ehrlich ascites tumor cells is also inhibited by Ca2+ accumulated by the mitochondria in situ. Possible causes of the Ca2+-induced inhibition of oxidative phosphorylation are considered.  相似文献   

8.
The duclauxin derivatives xenoclauxin and desacetylduclauxin were examined for their effects on the growth of L-1210 murine leukemia cells, on the induction of DNA repair in the rat and mouse hepatocyte primary culture (HPC/DNA repair test), and on oxidative phosphorylation in mitochondria from rat livers in comparison to duclauxin. Both derivatives inhibited the growth of L-1210 culture cells as strongly as duclauxin. Duclauxin derivatives were negative in the HPC/DNA repair test. Xenoclauxin exhibited a potent uncoupling effect accompanying a marked depression of state 3 respiration of mitochondria in a similar fashion to that of duclauxin. Desacetylduclauxin significantly inhibited the state 3 respiration without causing uncoupling of oxidative phosphorylation in mitochondria. These results strongly suggest that xenoclauxin and desacetylduclauxin fromPenicillium duclauxii are not genotoxic but are cytotoxic mainly due to their potent inhibition of ATP synthesis in mitochondria.Abbreviations DNP 2,4-dinitrophenol - ETP electron transport particles - HPC hepatocyte primary culture cells - RC respiratory control - TdR thymine deoxyribonucleotide - UDS unscheduled DNA synthesis  相似文献   

9.
The inhibition of succinate oxidation in both heart and liver mitochondria by the cardiotoxic anticancer antibiotic adriamycin in vitro was reversed to a large extent by exogenous ubiquinone-45. Inhibition of the oxidation of NAD+-linked substrates in heart and liver mitochondria responded differently to ubiquinone, the inhibition being reversed only in liver organelles. Administration of adriamycin inhibited oxidative phosphorylation in rat heart, kidney and liver mitochondria, the inhibition being highest in the heart organelles (about 50% for both NAD+-linked substrates and succinate). Exogenous addition of ubiquinone to mitochondria isolated from drug-treated animals did not reverse the inhibition. Administration of ubiquinone along with adriamycin did not change effectively the pattern of drug-mediated decrease in oxidative activity of the organelles, particularly in the heart.  相似文献   

10.
According to the classical view, the cytoprotective effect of inhibitors of poly(ADP-ribose)polymerase (PARP) in oxidative stress was based on the prevention of NAD+ and ATP depletion, thus the attenuation of necrosis. Our previous data on PARP inhibitors in an inflammatory model suggested that PARP-catalyzed ADP-ribosylations may affect signaling pathways, which can play a significant role in cell survival. To clarify the molecular mechanism of cytoprotection, PARP activity was inhibited pharmacologically by suppressing PARP-1 expression by a small interfering RNA (siRNA) technique or by transdominantly expressing the N-terminal DNA-binding domain of PARP-1 (PARP-DBD) in cultured cells. Cell survival, activation of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt system, and the preservation of mitochondrial membrane potential were studied in hydrogen peroxide-treated WRL-68 cells. Our data showed that suppression of the single-stranded DNA break-induced PARP-1 activation by pharmacological inhibitor, siRNA, or by the transdominant expression of PARP-DBD protected cells from oxidative stress and induced the phosphorylation and activation of Akt. Furthermore, prevention of Akt activation by inhibiting PI3-kinase counteracted the cytoprotective effect of PARP inhibition. Microscopy data showed that PARP inhibition-induced Akt activation was responsible for protection of mitochondria in oxidative stress because PI3-kinase inhibitors diminished the protective effect of PARP inhibition. Similarly, Src kinase inhibitors, which decrease Akt phosphorylation, also counteracted the protection of mitochondrial membrane potential supporting the pivotal role of Akt in cytoprotection. These data together with the finding that PARP inhibition in the absence of oxidative stress induced the phosphorylation and activation of Akt indicate that PARP inhibition-induced Akt activation is dominantly responsible for the cytoprotection in oxidative stress.  相似文献   

11.
The effect of 3-nitropropionate (3-NPA)on oxidative phosphorylation by using mitochondria prepared from both rat liver and brain were investigated in connection with the toxicity of this material. It was found that 3-NPA inhibited oxidative phosphorylation. In this inhibition, the uptake of inorganic phosphate was blocked but the oxygen uptake was not influenced at all. Furthermore, increase in ATPase activity of intact mitochondria was shown by the addition of 3-NPA. Results showed that 3-NPA disturbed oxidative phosphorylation as an uncoupler. However, the degree of inhibition by 3-NPA was not so high in comparison with other well-known uncouplers.

Thus the toxicity of 3-NPA is not due to the inhibition of oxidative phosphorylation. 3-NPA also does not affect on cytochrome oxidase activity.  相似文献   

12.
The efficiency of oxidative phosphorylation was compared between rats chronically fed with ethanol and controls. (i) Results showed that the liver mitochondria state 4 respiratory rate was strongly inhibited, while the corresponding proton-motive force was not affected; (ii) the cytochrome oxidase content and activity were decreased and (iii) the oxidative-phosphorylation yield was increased in the ethanol exposed group. Furthermore, oxidative phosphorylation at coupling site II was not affected by ethanol. Cytochrome oxidase inhibition by sodium-azide mimicked the effects of ethanol intoxication in control mitochondria. This indicates that the decrease in cytochrome oxidase activity induced by ethanol intoxication directly increases the efficiency of oxidative phosphorylation.  相似文献   

13.
The effect of insulin was studied as applied to the inhibited under conditions of adrenalectomy process of oxidative phosphorylation in the rat liver and heart mitochondria. It is established that adrenalectomy does not change oxidative activity of mitochondria but inhibits the process of phosphorylation, which results in the decreased values of the ADP/O coefficient and the respiratory control. Insulin administered to the adrenalectomized rats 3h before the experiments reduces the disturbed oxidative phosphorylation in mitochondria of the liver and heart by intensifying the degree of ADP phosphorylation.  相似文献   

14.
Purified branched-chain 2-oxo acid dehydrogenase (BCODH) and pyruvate dehydrogenase (PDH) had apparent Km values (microM) for 2-oxobutyrate of 26 and 114, with a relative Vmax. (% of Vmax. for 3-methyl-2-oxobutyrate and pyruvate) of 38 and 45% respectively. The phosphorylation state of both complexes in extracts of mitochondria from rat liver, kidney, heart and skeletal muscle was shown to influence oxidative decarboxylation of 2-oxobutyrate. Inhibitory antibodies to BCODH and an inhibitor of PDH (3-fluoropyruvate) were used with mitochondrial extracts to determine the relative contribution of both complexes to oxidative decarboxylation of 2-oxobutyrate. Calculated rates of 2-oxobutyrate decarboxylation in mitochondrial extracts, based on the kinetic constants given above and the activities of both complexes, were the same as the measured rates. Hydroxyapatite chromatography of extracts of mitochondria from rat liver revealed only two peaks of oxidative decarboxylation of 2-oxobutyrate, with one peak associated with PDH and the other with BCODH. Competition studies with various 2-oxo acids revealed a different inhibition pattern with mitochondrial extracts from liver compared with those from heart or skeletal muscle. We conclude that both intramitochondrial complexes are responsible for oxidative decarboxylation of 2-oxobutyrate. However, the BCODH is probably the more important complex, particularly in liver, on the basis of kinetic analyses, activity or phosphorylation state of both complexes, competition studies, and the apparent physiological concentration of pyruvate, 2-oxobutyrate and the branched-chain 2-oxo acids.  相似文献   

15.
The physiological role of F(1)F(0)-ATPase inhibition in ischemia may be to retard ATP depletion although views of the significance of IF(1) are at variance. We corroborate here a method for measuring the ex vivo activity of F(1)F(0)-ATPase in perfused rat heart and show that observation of ischemic F(1)F(0)-ATPase inhibition in rat heart is critically dependent on the sample preparation and assay conditions, and that the methods can be applied to assay the ischemic and reperfused human heart during coronary by-pass surgery. A 5-min period of ischemia inhibited F(1)F(0)-ATPase by 20% in both rat and human myocardium. After a 15-min reperfusion a subsequent 5-min period of ischemia doubled the inhibition in the rat heart but this potentiation was lost after 120 min of reperfusion. Experiments with isolated rat heart mitochondria showed that ATP hydrolysis is required for effective inhibition by uncoupling. The concentration of oligomycin for 50% inhibition (I(50)) for oxygen consumption was five times higher than its I(50) for F(1)F(0)-ATPase. Because of the different control strengths of F(1)F(0)-ATPase in oxidative phosphorylation and ATP hydrolysis an inhibition of the F(1)F(0)-ATPase activity in ischemia with the resultant ATP-sparing has an advantage even in an ischemia/reperfusion situation.  相似文献   

16.
We have examined the ultrastructure of mitochondria as it relates to energy metabolism in the intact cell. Oxidative phosphorylation was induced in ultrastructurally intact Ehrlich ascites tumor cells by rapidly generating intracellular adenosine diphosphate from endogenous adenosine triphosphate by the addition of 2-deoxyglucose. The occurrence of oxidative phosphorylation was ascertained indirectly by continuous and synchronous monitoring of respiratory rate, fluorescence of pyridine nucleotide, and 90° light-scattering. Oxidative phosphorylation was confirmed by direct enzymatic analysis of intracellular adenine nucleotides and by determination of intracellular inorganic orthophosphate. Microsamples of cells rapidly fixed for electron microscopy revealed that, in addition to oxidative phosphorylation, an orthodox → condensed ultrastructural transformation occurred in the mitochondria of all cells in less than 6 sec after the generation of adenosine diphosphate by 2-deoxyglucose. A 90° light-scattering increase, which also occurs at this time, showed a t ½ of only 25 sec which agreed temporally with a slower orthodox → maximally condensed mitochondrial transformation. Neither oxidative phosphorylation nor ultrastructural transformation could be initiated in mitochondria in intact cells by the intracellular generation of adenosine diphosphate in the presence of uncouplers of oxidative phosphorylation. Partial and complete inhibition of oxidative phosphorylation by oligomycin resulted in a positive relationship to partial and complete inhibition of 2-deoxyglucose-induced ultrastructural transformation in the mitochondria in these cells. The data presented reveal that an orthodox → condensed ultrastructural transformation is linked to induced oxidative phosphorylation in mitochondria in the intact ascites tumor cell.  相似文献   

17.
1. DL-8-Methyldihydrolipoate was shown to be a potent inhibitor of mitochondrial oxidative phosphorylation and ATP-driven energy-linked reactions. 2. ADP-stimulated respiration utilizing pyruvate + malate and succinate in both ox heart and rat liver mitochondria is inhibited; oxidative phosphorylation using pyruvate + malate, succinate and ascorbate + NNN'N'-tetramethyl-p-phenylenediamine as substrates is also inhibited; uncoupler-stimulated respiration is unaffected regardless of the substrate used. 3. Mitochondrial oligomycin-sensitive adenosine triphosphatase is inhibited in both the membrane-bound form and the purified detergent-dispersed preparation. 4. ATP-driven transhydrogenase and the ATP-driven energy-linked reduction of NAD+ by succinate in ox heart submitochondrial particles are inhibited, whereas the respiratory-chain-driven transhydrogenase is unaffected. 5. DL-8-Methyl-lipoate has no immediate effect on the above reactions, demonstrating the requirement for the reduced form for inhibition. 6. The inhibitory properties of DL-8-methyldihydrolipoate are analogous to those of oligomycin and provide further evidence of a role for lipoic acid in oxidative phosphorylation.  相似文献   

18.
The renal toxicity of (R,S)-3-chlorolactate has been shown to be due to the (R)-isomer which, when administered to rats, induces diuresis and glucosuria. The metabolic activity of isolated tubule cells, prepared from rat kidney, was inhibited by (R)-3-chlorolactate and the action of the compound was localised as affecting mitochondrial metabolism. Studies with kidney mitochondria pin-pointed the site of action as being involved with the oxidative metabolism of malate but not the inhibition of mitochondrial malate dehydrogenase. The effects of oxalate, a metabolite of (R)-3-chlorolactate, and of (R,S)-3-chlorolactaldehyde on renal tubule cells was investigated. While some degrees of inhibition of metabolic activity were evident, these compounds were not responsible for the toxic effects produced by (R)-3-chlorolactate.  相似文献   

19.
Mitochondrial calcium overload has been implicated in the irreversible damage of reperfused heart. Accordingly, we studied the effect of an oxygen-bridged dinuclear ruthenium amine complex (Ru360), which is a selective and potent mitochondrial calcium uniporter blocker, on mitochondrial dysfunction and on the matrix free-calcium concentration in mitochondria isolated from reperfused rat hearts. The perfusion of Ru360 maintained oxidative phosphorylation and prevented opening of the mitochondrial permeability transition pore in mitochondria isolated from reperfused hearts. We found that Ru360 perfusion only partially inhibited the mitochondrial calcium uniporter, maintaining the mitochondrial matrix free-calcium concentration at basal levels, despite high concentrations of cytosolic calcium. Additionally, we observed that perfused Ru360 neither inhibited Ca2+ cycling in the sarcoplasmic reticulum nor blocked ryanodine receptors, implying that the inhibition of ryanodine receptors cannot explain the protective effect of Ru360 in isolated hearts. We conclude that the maintenance of postischemic myocardial function correlates with an incomplete inhibition of the mitochondrial calcium uniporter. Thus, the chemical inhibition by this molecule could be an approach used to prevent heart injury during reperfusion.  相似文献   

20.
The effect of phloretin on respiration by isolated mitochondria and submitochondrial particles was studied. In submitochondrial particles, both NADH- and succinate-dependent respiration was inhibited by phloretin. 50% maximum inhibition was reached at phloretin concentrations of 0.1 mM (NADH oxidation) and 0.7 mM (succinate oxidation). In isolated mitochondria, phloretin inhibited glutamate oxidation in both State 3 and State 4; 50% maximum inhibition occurred at about 30 microM. Succinate oxidation is inhibited in State 3 by phloretin, inhibition being half its maximum value at 0.5 mM, but in State 4 it is stimulated about 2-fold by phloretin at a concentration of 0.6 mM. Ascorbate oxidation is stimulated in both State 3 and State 4, maximum stimulation being equal to that obtained with an uncoupler of oxidative phosphorylation. Under all circumstances, phloretin lowered the transmembrane electrical potential difference in isolated mitochondria. These results are discussed in terms of mosaic non-equilibrium thermodynamics. We conclude that phloretin is both an uncoupler and an inhibitor of oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号