首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Two mutant lines of Hordeum vulgare cv. Maris Mink (designated RChl 46 and 47) deficient in chlorophyll b have been isolated following azide mutagenesis. Two major thylakoid membrane proteins of molecular weight 25 and 26 k daltons are absent from the mutant plants following analysis by SDS gel electrophoresis, presumably due to a lack of the light harvesting chlorophyll a/b complex. The photosynthetic capabilities of the wild type and mutant lines were very similar.  相似文献   

2.
Chloroplasts of a chlorophyll (Chl) b-less barley mutant were solubilized with digitonin and fractionated by polyacrylamide gel electrophoresis with sodium deoxycholate in the running buffer. By this procedure, in contrast to using sodium dodecylsulfate (SDS) for solubilization, a Chl a-protein analogous to the major light-harvesting Chl a-b protein complex from wildtype chloroplasts was recovered. This mutant Chl a-protein comprises about fifty percent of the total Chl a, and is very similar in carotenoid, amino acid, protein and polypeptide composition to the major wildtype antenna Chl a-b protein. The only major differences we have found is its instability in the presence of SDS and sensitivity to protease action. Even with deoxycholate, the mutant Chl a complex often dissociates during electrophoresis into two green bands. The lack of Chl b appears to affect the normal organization of Chl a and protein in such a way as to render the complex more unstable.CIW-DPB No. 917.  相似文献   

3.
Five mutant lines of barley (Hordeum vulgare L.), which are only able to grow at elevated levels of CO2, contain less than 5% of the wild-type activity of ferredoxin-dependent glutamate synthase (EC 1.4.7.1). Two of these lines (RPr 82/1 and RPr 82/9) have been studied in detail. Leaves and roots of both lines contain normal activities of NADH-dependent glutamate synthase (EC 1.4.1.14) and the other enzymes of ammonia assimilation. Under conditions that minimise photorespiration, both mutants fix CO2 at normal rates; on transfer to air, the rates drop rapidly to 15% of the wild-type. Incorporation of 14CO2 into sugar phosphates and glycollate is increased under such conditions, whilst incorporation of radioactivity into serine, glycine, glycerate and sucrose is decreased; continuous exposure to air leads to an accumulation of 14C in malate. The concentrations of malate, glutamine, asparagine and ammonia are all high in air, whilst aspartate, alanine, glutamate, glycine and serine are low, by comparison with the wild-type parent line (cv. Maris Mink), under the same conditions. The metabolism of [14C]glutamate and [14C]glutamine by leaves of the mutants indicates a very much reduced ability to convert glutamine to glutamate. Genetic analysis has shown that the mutation in RPr 82/9 segregates as a single recessive nuclear gene.Abbreviations GDH glutamate dehydrogenase (EC 1.4.1.2) - GS glutamine synthetase (EC 6.3.1.2) - RuBP ribulose 1,5-bisphosphate  相似文献   

4.
5.
Polymorphism at the Hor 1 locus of barley (Hordeum vulgare L.)   总被引:1,自引:0,他引:1  
The Hor 1 locus of barley encodes a group of seed storage polypeptides called C hordein. Two-dimensional electrophoretic analysis of C-hordein fractions from six cultivars with different alleles at the Hor 1 locus showed extensive polymorphism. A total of 34 major polypeptides was mapped, with between 4 and 18 present in each cultivar. There was less variation among the same cultivars in the numbers (6 to 10) of restriction fragments of genomic DNA which hybridized to a cDNA clone related to C hordein. The total number of restriction fragments was also lower (22), and most pairs of cultivars had more restriction fragments than polypeptides in common. A total number of about 20–30 C-hordein genes per haploid genome was estimated. The results indicate that cultivars differ mainly in the extent of gene and polypeptide divergence, rather than in the degree of gene reiteration. They are consistent with the proposed origin of the multiple structural genes at the Hor 1 locus by the duplication and divergence of a single ancestral gene.NACB was supported by a grant from the Home Grown Cereals Authority.  相似文献   

6.
A barley gene encoding the major light-harvesting chlorophyll a/b-binding protein (LHCP) has been sequenced and then expressed in vitro to produce a labelled LHCP precursor (pLHCP). When barley etiochloroplasts are incubated with this pLHCP, both labelled pLHCP and LHCP are found as integral thylakoid membrane proteins, incorporated into the major pigment-protein complex of the thylakoids. The presence of pLHCP in thylakoids and its proportion with respect to labelled LHCP depends on the developmental stage of the plastids used to study the import of pLHCP. The reduced amounts of chlorophyll in a chlorophyll b-less mutant of barley does not affect the proportion of pLHCP to LHCP found in the thylakoids when import of pLHCP into plastids isolated from the mutant plants is examined. Therefore, insufficient chlorophyll during early stages of plastid development does not seem to be responsible for their relative inefficiency in assembling pLHCP. A chase of labelled pLHCP that has been incorporated into the thylakoids of intact plastids, by further incubation of the plastids with unlabelled pLHCP, reveals that the pLHCP incorporated into the thylakoids can be processed to its mature size. Our observations strongly support the hypothesis that after import into plastids, pLHCP is inserted into thylakoids and then processed to its mature size under in vivo conditions.  相似文献   

7.
Summary A highly regenerable target tissue and a high-frequency DNA delivery system are required for the routine production of transgenic barley. This project separately optimized tissue culture and particle bombardment parameters. Immature zygotic embryos (0.7 to 1.2 mm) were excised and culture on B5L solid medium. Klages and H930-36 cultivars regenerated significantly more green plants than Sabarlis and Bruce. The regeneration pathway shifted from organogenesis to somatic embryogenesis when maltose was used as the medium carbohydrate source instead of sucrose. More somatic embryos were induced on 5 mg/liter 2,4-dichlorophenoxyacetic acid than 2 mg/liter. Gene delivery was optimized using anthocyanin regulatory genes as a transient marker. A 3-mm rupture disc-to-macrocarrier gap distance, a 1-day prebombardment embryo culture period, and a maltose carbohydrate source were each significantly better than other treatments. Double bombardments per plate, a 6-mm macrocarrier fly distance, and 650-psi rupture discs each had the highest number of transiently expressing cells in individual experiments, although the results were not statistically significant compared to the other treatments. Using the optimized parameters, over 200 cells routinely expressed anthocyanin in a bombarded immature embryo. In tissue culture experiments, 350 to 400 green plants regenerated per 100 immature embryos. The improvement of green plant regeneration and gene delivery forms a strong basis to develop a practical barley transformation system.  相似文献   

8.
Barley anthers from cold pretreated spikes produced no or few calluses when plated with both loculi in contact with the medium (flat). When anthers were plated with only one loculus in contact with the medium (up), a high proportion of the anthers produced calluses. The top loculus of the up anthers was most productive. Flat anthers, when compared with up anthers, were not only slower to produce multicellular pollen grains (MCPs) and microcalluses, but also produced fewer of them and ceased production earlier. The MCPs and microcalluses in flat anthers grew more slowly and few developed beyond the 30 cell stage. These results establish the importance of anther orientation for barley anther culture.  相似文献   

9.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport.  相似文献   

10.
Summary A crossing programme for trispecific hybridization including cultivated barley (Hordeum vulgare L.) as the third parent was carried out. The primary hybrids comprised 11 interspecific combinations, each of which had either H. jubatum or H. lechleri as one of the parents. The second parent represented species closely or distantly related to H. jubatum and H. lechleri. In trispecific crosses with diploid barley, the seed set was 5.7%. Crosses with tetraploid barley were highly unsuccessful (0.2% seed set). Three lines of diploid barley were used in the crosses, i.e. Gull, Golden Promise and Vada. Generally, cv Gull had high crossability in crosses with related species in the primary hybrid. It is suggested that Gull has a genetic factor for crossability not present in cv Vada and cv Golden Promise. One accession of H. brachyantherum used in the primary hybrid had a very high crossability (seed set 54.7%) in combination with cv Vada but no viable offspring was produced. In all, two trispecific hybrids were raised, viz. (H. lechleri x H. brevisubulatum) x Gull (2n=7–30) and (H. jubatum x H. lechleri) x Gull (2n=20–22). The first combination invariably had a full complement of seven barley chromosomes plus an additional chromosome no. 7, but a varying number of chromosomes (19–22) of the wild-species hybrid. The second combination had a full set of barley chromosomes. The meiotic pairing was low in both combinations.  相似文献   

11.
12.
The barley BARE-1 is a transcribed, copia-like retroelement with well-conserved functional domains, an active promoter, and a copy number of at least 3 × 104. We examined its chromosomal localization by in situ hybridization. The long terminal repeat (LTR) probe displayed a uniform hybridization pattern over the whole of all chromosomes, excepting paracentromeric regions, telomeres, and nucleolar organizer (NOR) regions. The integrase probe showed a similar pattern. The 5-untranslated leader (UTL) probe, expected to be the most rapidly evolving component, labeled chromosomes in a dispersed and non-uniform manner, concentrated in the distal regions, possibly indicating a targe site preference.  相似文献   

13.
Halvor Aarnes 《Planta》1978,140(2):185-192
Homoserine kinase was purified 700-fold by fractional ammonium sulfate precipitation, heat treatment, CM-Sephadex C-50 and DEAE-Sephadex A-50 ion exchange chromatography, and Sephadex G-100 gel filtration. The reaction products O-phosphohomoserine and ADP were the only compounds which caused considerable inhibition of homoserine kinase activity. Product inhibition studies showed non-competitive inhibition between ATP and O-phosphohomoserine and between homoserine and O-phosphohomoserine, and competitive inhibition between ATP and ADP. ADP showed non-competitive inhibition versus homoserine at suboptimal concentrations of ATP. At saturating concentrations of ATP no effect of ADP was observed. The homoserine kinase activity was negligible in the absence of K+ and the Km value for K+ was observed to be 4.3 mmol l–1. A non-competitive pattern was observed with respect to the substrates homoserine and ATP. Threonine synthase in the first green leaf of 6-day-old barley seedlings was partially purified 15-fold by ammonium sulfate fractionation and Sephadex G-100 gel chromatography. Threonine synthase was shown to require pyridoxal 5-phosphate as coenzyme for optimum activity and the enzyme was strongly activated by S-adenosyl-L-methionine. The optimum pH for threonine synthase activity was 7 to 8.Abbreviations PLP Pyridoxal 5-phosphate - SAM S-adenosyl-L-methionine - HSP O-phosphohomoserine  相似文献   

14.
Summary The effects of DNA hypomethylating drugs (azacytidine and ethionine) on induction of microspore-derived calluses and embryos were studied in barley (Hordeum vulgare L.) ev. Igri. The results were as follows: (1) Yield of calluses and embryos pretreated with the different concentrations of azacytidine for 3 d was several-fold higher than that of the control. The highest yield of calluses and embryos in all treatments appeared at a concentration of 3 mg l−1, which reached 11.03 per anther. It was 110-fold higher than the control. (2) There was a significant difference in yield of calluses and embryos between the different days of pretreatment. The highest yield was obtained at a 3-d pretreatment. If the period of pretreatment was shorter or longer than 3 d, yield of calluses and embryos was reduced sharply, and was similar to that of the control. (3) The data obtained with ethionine pretreatment were very similar to those obtained with azacytidine. (4) Tests on the different methods of pretreatment showed that yield of calluses and embryos pretreated with distilled H2O, mannitol, azacytidine, and ethionine was much higher than other pretreatments and the control, and reached 6.53–11.39 per anther. The yield of calluses and embryos pretreated with DNA hypomethylating drugs was higher than with mannitol. However, pretreatment with hypomethylation drugs supplemented with induction medium was not effective.  相似文献   

15.
Three C hordein fractions were prepared by ion-exchange chromatography of a total hordein preparation on carboxymethyl cellulose at pH 4.6 Polyacrylamide gel electrophoresis at pH 3.2 and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) at pH 8.9 showed that each fraction contained a single major band. The apparent molecular weights of these were determined by SDS-PAGE as 58, 57, and 54,000. When compared by isoelectric focusing, however, the 58 and 57,000 components each separated into two major bands and the 54,000 component into four. Amino acid analysis showed that although the three fractions had similar compositions with high glutamate+glutamine (38–39%), proline (30–32%) and phenylalanine (8–9%) contents, some differences were present, notably in the relative content of lysine. The three fractions had identical amino acid sequences for the first ten residues at the N-terminal end. They also had identical sequences for the first five residues at the C-terminal end, with the exception that a mixture of two amino acids were released from position 4 of the 58,000 fraction only. Peptide mapping with three enzymes (trypsin, chymotrypsin and V8 protease) indicated that the 58 and 57,000 fractions were more closely related to each other than to the 54,000 fraction. It is suggested that the 57 and 58,000 fractions and the 54,000 fraction constitute two families of closely related polypeptides which are coded by genes derived from the duplication and divergence of a single ancestral gene.  相似文献   

16.
We have applied a refined microdissection procedure to create a plasmid library of the barley (Hordeum vulgare L.) chromosome arm 1HS. The technical improvements involved include synchronization of meristematic root tissue, a metaphase drop-spread technique, paraffin protection of the collection drop to avoid evaporation, and a motorized and programmable microscope stage. Thirteen readily-discernible telocentric chromosomes have been excised from metaphases of synchronized root-tip mitoses. After lysis in a collection drop (2 nl), the DNA was purified, restricted withRsaI, ligated into a vector containing universal sequencing primers, and amplified by the polymerase chain reaction. Finally, the amplified DNA was cloned into a standard plasmid vector. The size of the library was estimated to be approximately 44,000 recombinant plasmids, of which approximately 13% can be utilized for RFLP analysis. Tandem repetitive probes could be rapidly excluded from further analysis after colony hybridization with labelled total barley DNA. Analysis of 552 recombinant plasmids established that: (1) the insert sizes ranged between 70 and 1150 bp with a mean of 250 bp, (2) approximately 60% of the clones contained highly repetitive sequences, and (3) all single- or low-copy probes tested originate from chromosome 1HS. Four probes were genetically mapped, using an interspecificH. vulgare xH. spontaneum F2 population. One of these probes was found to be closely linked to theMla locus conferring mildew resistance.  相似文献   

17.
The distribution of net assimilated C in barley (Hordeum vulgare L.) grown at two N-levels was determined in a growth chamber. The N-fertilization involved 0 and 3.61 mol N g-1 dry soil. After growth for seven weeks in an atmosphere with continuously 14C-labelled CO2, 14C was determined in shoots, roots, rhizosphere respiration and soil. At the low N-level, 32% of the net assimilated 14C was translocated below ground, whereas at the high N-level 27% was translocated below ground. The release of C from roots (root respiration, microbial respiration originating from decomposition of 14C-labelled root material and 14C remaining in soil) was greater with no N-supply (19% of net assimilated 14C) than in the treatment with N-supply (15%). Thus, the effect of N-supply on both translocation of assimilated 14C below ground and the release of 14C from growing roots was relatively small.  相似文献   

18.
Summary Primary callus of barley (Hordeum vulgare L.) derived from scutella (cv. Dissa) and anthers (cv. Igri) was used for protoplast isolation and plant regeneration. The protoplasts were embedded in agarose and cultured with nurse cells. The plating efficiency varied from 0.1% to 0.7%. Shoots regenerated from the developing callus. Plantlets were transferred to soil and cultivated in the greenhouse three to five months after protoplast isolation. All plants were normal in morphology, and most of them flowered and set seeds.  相似文献   

19.
P. Scott  R. L. Lyne  T. ap Rees 《Planta》1995,197(3):435-441
The aim of this work was to discover why barley (Hordeum vulgare L.) microspores die when cultured on media containing 40 mM sucrose but undergo embryogenesis on 40 mM maltose. Freshly isolated microspores were cultured for 6–24 h on media containing either [U-14C]maltose or [U-14C]sucrose at 40 mM, and the detailed distribution of 14C was determined. The amounts of glycolytic intermediates, ATP, ADP and AMP, in microspores were also measured. Cultures on sucrose differed from those on maltose in that the initial rate of metabolism was faster but declined rapidly, less 14C was recovered in polymers and more in alanine, there was extensive leakage of assimilated carbon, significant accumulation of ethanol and a lower adenylate energy charge. It is argued that microspores cultured on 40 mM sucrose die because they metabolize the sugar rapidly, become hypoxic and, as a result, accumulate large quantities of ethanol within the cells. Metabolism of maltose is slower and there is sufficient oxygen available to allow cells to survive in culture. Consequently some of the cultured cells undergo embryogenesis.P.S. thanks the Science and Engineering Research Council and Shell Research Ltd., Sittingbourne, for a Cooperative Award in Science and Engineering studentship.  相似文献   

20.
Renate Lührs  Horst Lörz 《Planta》1988,175(1):71-81
Cell-suspension cultures were initiated from embryogenic calli of various barley cultivars. Seven fast-growing suspension lines were obtained from four different cultivars (cvs. Dissa, Emir, Golden Promise and Igri). Two of these cell suspensions showed morphogenic capacity. From a cell suspension of cv. Dissa, albino plantlets were regenerated when aggregates were cultured on solid medium. Aggregates of cv. Igri usually stopped differentiation at the globular stage, but occasionally formed scutellum-like structures. Five suspension lines were used for protoplast isolation and culture. Dividing protoplasts were obtained from all lines, but with cv. Igri a few divisions only and no further development were observed. Protoplasts from the various lines differed in the time of first division (2–14 d), division frequency (0.09–70.9%) and efficiency of colony formation (0.09–7.3%). Protoplasts isolated from the morphogenic cell suspension of cv. Dissa developed compact calli which sporadically regenerated albino plantlets.Abbreviations CC, MS, N6, SH, Kao8p culture media; see Material and methods - cv chltivar - dicamba 3,6-dichloro-o-anisic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号