首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Epigenetics》2013,8(10):1142-1150
Although recent studies in patients with paternal uniparental disomy 14 [upd(14)pat] and other conditions affecting the chromosome 14q32.2 imprinted region have successfully identified underlying epigenetic factors involved in the development of upd(14)pat phenotype, several matters, including regulatory mechanism(s) for RTL1 expression, imprinting status of DIO3 and placental histological characteristics, remain to be elucidated. We therefore performed molecular studies using fresh placental samples from two patients with upd(14)pat. We observed that RTL1 expression level was about five times higher in the placental samples of the two patients than in control placental samples, whereas DIO3 expression level was similar between the placental samples of the two patients and the control placental samples. We next performed histological studies using the above fresh placental samples and formalin-fixed and paraffin-embedded placental samples obtained from a patient with a maternally derived microdeletion involving DLK1, the-IG-DMR, the MEG3-DMR and MEG3. Terminal villi were associated with swollen vascular endothelial cells and hypertrophic pericytes, together with narrowed capillary lumens. DLK1, RTL1 and DIO3 proteins were specifically identified in vascular endothelial cells and pericytes, and the degree of protein staining was well correlated with the expression dosage of corresponding genes. These results suggest that RTL1as-encoded microRNA functions as a repressor of RTL1 expression, and argue against DIO3 being a paternally expressed gene. Furthermore, it is inferred that DLK1, DIO3 and, specially, RTL1 proteins, play a pivotal role in the development of vascular endothelial cells and pericytes.  相似文献   

3.
We report studies on the etiology of uniparental disomy (UPD) in Silver-Russell syndrome (SRS) patients. Thirty-seven SRS families were typed with short tandem repeat markers from chromosomes 2, 7, 9, 14, and 16. UPD for these chromosomes has either been described in association with growth retardation or has been observed in confined placental mosaicism, a mechanism that may result in UPD. Maternal UPD7 was detected in three SRS patients, accounting for approximately 10% of the tested SRS patients. These results agree with previously published studies. The allelic distribution in one of the three families indicates complete isodisomy, whereas allelic patterns in the other two families are consistent with partial and complete heterodisomy, respectively, suggesting that, in the latter cases, UPD originates from maternal meiosis, whereas in the first case, it seems to be of mitotic origin. STR typing for UPD of chromosomes 2, 9, 14, and 16 showed no abnormalities. Our results demonstrate the necessity of screening SRS patients for UPD7, although the effect of UPD7 cannot be correlated with the SRS phenotype as yet. An association between UPD for the other investigated chromosomes and SRS seems to be negligible. Received: 13 February 1997 / Accepted: 13 May 1997  相似文献   

4.
Mitotic recombination in satellite stalks — a phenomenon often difficult to distinguish from satellite association — was studied in a sister and a brother with Bloom's syndrome. Segregation after recombination was analyzed in the lymphocytes of the sister who had Q-bright satellites. Her cells varied greatly both in regard to the acrocentrics which displayed Q-bright satellites and the number of such satellites per cell. In 58 cells a total of 31 different patterns were seen. In 83 cells of 6 controls who also had Q-bright satellites on at least one acrocentric chromosome, not one cell was found in which the pattern differed from that characteristic of the person. Obviously exchanges between satellite stalks in patients with Bloom's syndrome are fairly frequent (estimated lower limit 6/1000) and very rare in persons who do not have this syndrome (estimated 0.1/1000).  相似文献   

5.
Human paternal uniparental disomy for chromosome 14 (upd(14)pat) presents with skeletal abnormalities, joint contractures, dysmorphic facial features and developmental delay/mental retardation. Distal human chromosome 14 (HSA14) is homologous to distal mouse chromosome 12 (MMU12) and both regions have been shown to contain imprinted genes. In humans, consistent radiographic findings include a narrow, bell-shaped thorax with caudal bowing of the anterior ribs, cranial bowing of the posterior ribs and flaring of the iliac wings without shortening or dysplasia of the long bones. Mice with upd(12)pat have thin ribs with delayed ossification of the sternum, skull and feet. In both mice and humans, the axial skeleton is predominantly affected. We hypothesize that there is an imprinted gene or genes on HSA14/MMU12 that specifically affects rib/thorax development and the maturation of ossification centers in the sternum, feet and skull with little effect on long bone development.  相似文献   

6.
Uniparental disomy (UPD) refers to the presence of two copies of a chromosome from one parent and none from the other parent. In genetic studies of UPDs, many genetic markers are usually used to identify the stage of nondisjunction that leads to UPD and to uncover the associated unusual patterns of recombinations. However, genetic information in such data has not been fully utilized because of the limitations of the existing statistical methods for UPD data. In the present article, we develop a multilocus statistical approach that has the advantages of being able to simultaneously consider all genetic markers for all individuals in the same analysis and to allow general models for the crossover process to incorporate crossover interference. In particular, for a general crossover-process model that assumes only that there exists in each interval at most one crossover, we describe how to use the expectation-maximization algorithm to examine the probability distribution of the recombination events underlying meioses leading to UPD. We can also use this flexible approach to create genetic maps based on UPD data and to inspect recombination differences between meioses exhibiting UPD and normal meioses. The proposed method has been implemented in a computer program, and we illustrate the proposed approach through its application to a set of UPD15 data.  相似文献   

7.
8.
Uniparental disomy (UPD) refers to the situation in which both copies of a chromosome pair have originated from one parent. In humans, it can result in clinical conditions by producing either homozygosity for recessive mutations or aberrant patterns of imprinting. Furthermore, UPD is frequently found in conjunction with mosaicism for a chromosomally abnormal cell line, which can also contribute to phenotypic abnormalities. Investigations into the mechanisms by which UPD may arise have helped to expand our general awareness of the impact of chromosomal abnormalities and chromosomal mosaicism in normal human development. Specifically, it appears that errors in the transmission of a chromosome from parent to gamete and during early somatic cell divisions are remarkably common but that embryo and cell selection during early embryogenesis help to ensure the presence of a numerically balanced chromosome complement in the developing fetus. UPD is also likely to occur within a portion of cells in all individuals simply as a consequence of somatic recombination occurring during mitotic cell divisions. This can be an important step in cancer development as well as a contributing factor to other late onset diseases. This review summarizes mechanisms by which UPD may arise and their associated clinical consequences.  相似文献   

9.
Summary Six Prader-Willi syndrome (PWS) patients with normal karyotypes and their parents were analyzed to determine the nature of the molecular aberrations present in the proximal region of 15q and to determine the parental origin of the aberrant chromosome 15. In addition, the likehood that uniparental disomy plays a significant role in the etiology of PWS patients with normal karyotypes was studied. Restriction fragment length polymorphisms (RFLPs) recognized by seven probes [pML34 (D15S9), pTD3-21, pCGS0.9, pCGS1.1 (D15S10), IR4.3 (D15S11), IR10.1 (DS15S12), p189-1 (D15S13), IR39 (D15S18), and CMW-1 (D15S24)] mapping to the Prader-Willi chromosome region (PWCR) and an additional two probes [pMS1-14 (D15S1); the cDNA of neuromedin B] mapping elsewhere on chromosome 15 were analyzed in the six PWS patients and their parents. Copy number of each locus within the PWCR was determined by densitometry. Molecular rearrangements of the proximal region of 15q were observed in all of the six probands and the origin of the aberrant chromosome 15 when determined was consistently paternal in origin. While data obtained from our six patients does not support the mechanism of disomy, results obtained from three of the six patients show more complex rearrangements hypothesized to have resulted from somatic recombination. These rearrangements have resulted in acquired homozygosity and the lack of a paternal allele at various loci within the PWCR. The presence of only a maternal contribution at certain loci as the result of somatic recombination may be another mechanism by which genetic imprinting plays a role in the presentation of the PWS phenotype.  相似文献   

10.
We report a male child with autism found to have maternal uniparental disomy (UPD) of chromosome 1. The child met diagnostic criteria for the three symptom domains of autism: language impairment, deficient social communication and excessively rigid and repetitive behaviours. He also had a variety of features often associated with autism, including mild mental retardation, small head circumference, hyperactivity, poor fine motor skills, slightly dysmorphic facial features and a heightened interest in olfactory stimulation. His brother, who did not have chromosome 1 UPD, was also autistic. The mother, but not the father, had a history of psychiatric illness and a number of personality and social traits similar to the core features of autism. The discovery of the cytogenetic abnormality was made during the course of a genome-wide linkage screen, wherein genotypes at 6 out of 17 chromosome 1 markers were non-Mendelian and all transmissions were consistent with UPD. Further genotyping (a total of 54 markers) revealed alternating regions of heterodisomy and isodisomy. Whereas chromosome 1 UPD has not been shown to cause disease by effects on imprinting, numerous reports exist of the abnormality unmasking recessive disease-causing mutations. In agreement with this, one of the regions of isodisomy overlaps an emerging chromosome 1 region of interest in autism located at 150–160 Mb.  相似文献   

11.
12.
《Epigenetics》2013,8(3):351-365
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30?017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.  相似文献   

13.
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Maternal UPD for chromosome 7 (matUPD7) results in Silver-Russell syndrome (SRS) with typical features and growth retardation, but no gene has been conclusively implicated in SRS. In order to identify novel DMRs and putative imprinted genes on chromosome 7, we analyzed eight matUPD7 patients, a segmental matUPD7q31-qter, a rare patUPD7 case and ten controls on the Infinium HumanMethylation450K BeadChip with 30 017 CpG methylation probes for chromosome 7. Genome-scale analysis showed highly significant clustering of DMRs only on chromosome 7, including the known imprinted loci GRB10, SGCE/PEG10, and PEG/MEST. We found ten novel DMRs on chromosome 7, two DMRs for the predicted imprinted genes HOXA4 and GLI3 and one for the disputed imprinted gene PON1. Quantitative RT-PCR on blood RNA samples comparing matUPD7, patUPD7, and controls showed differential expression for three genes with novel DMRs, HOXA4, GLI3, and SVOPL. Allele specific expression analysis confirmed maternal only expression of SVOPL and imprinting of HOXA4 was supported by monoallelic expression. These results present the first comprehensive map of parent-of-origin specific DMRs on human chromosome 7, suggesting many new imprinted sites.  相似文献   

14.
15.
The role of mitotic recombination in cancer has been difficult to study since prior knowledge of likely mutation targets was usually required.Here we have reviewed the recent advances in haematological malignancies. In particular we have dealt with acquired uniparental disomy and homozygosity, homozygous versus heterozygous mutations, transgenic animal models of MR and homozygous mutations, clonal evolution, mitotic recombination versus non-disjunction and the mechanism of mitotic recombination, breakpoints of mitotic recombination.  相似文献   

16.
17.
We carried out systematic studies of the contribution of uniparental disomy for eight human chromosomes, 2, 9, 11, 15, 16, 19, 20, and 21, to the etiology of spontaneous mortality of human embryos. Most of these chromosomes have regions with orthologous imprinted genes syntenic with those on mouse chromosomes, the disturbed expression of which is related to embryolethality in mice. Screening of uniparental disomy in spontaneous 5- to 16-week abortuses was performed by evaluation of the pattern of inheritance of alleles of polymorphic microsatellite loci located in the studied chromosomes. A total of 100 human embryos with cytogenetically determined normal karyotype were studied, in which arrest at the early stages of intrauterine development was determined by ultrasound examination of pregnant women. During this study, 13 embryos were discarded due to karyotype anomalies or nonpaternity. No cases of uniparental disomy were found among the 87 studied abortuses for any of chromosomes studied. The analysis of the results of this study and four other studies concerning the search for uniparental disomy in dead embryos and fetuses did not reveal its elevated frequency in spontaneous abortuses as compared to the theoretically expected value based on evaluation of the probable combination of meiotic errors in human gametes. The data we obtained suggest that, first, uniparental disomies for human chromosomes that have regions with orthologous imprinted genes syntenic with mouse chromosomes do not contribute noticeably to the death of human embryos at the early developmental stages and, second, the mechanisms underlying embryolethality as a result of disturbed expression of imprinted loci differ markedly in mammals evolutionarily remote from one other.  相似文献   

18.
Rearrangements of the acrocentric chromosomes (Robertsonian translocations and isochromosomes) are associated with an increased risk of aneuploidy. Given this, and the large number of reported cases of uniparental disomy (UPD) associated with an acrocentric rearrangement, carriers are presumed to be at risk for UPD. However, an accurate risk estimate for UPD associated with these rearrangements is lacking. A total of 174 prenatally identified acrocentric rearrangements, including both Robertsonian translocations and isochromosomes, were studied prospectively to identify UPD for the chromosomes involved in the rearrangements. The overall goal of the study was to provide an estimate of the risk of UPD associated with nonhomologous Robertsonian translocations and homologous acrocentric rearrangements. Of the 168 nonhomologous Robertsonian translocations studied, one showed UPD for chromosome 13, providing a risk estimate of 0.6%. Four of the six homologous acrocentric rearrangements showed UPD, providing a risk estimate of 66%. These cases have also allowed delineation of the mechanisms involved in producing UPD unique to Robertsonian translocations. Given the relatively high risk for UPD in prenatally identified Robertsonian translocations and isochromosomes, UPD testing should be considered, especially for cases involving the acrocentric chromosomes 14 and 15, in which UPD is associated with adverse clinical outcomes.  相似文献   

19.
Genetic analysis has shown that the distal portion of mouse chromosome 12 is imprinted; however, the developmental roles of imprinted genes in this region are not known. We have therefore generated conceptuses with uniparental disomy for chromosome 12, in which both copies of chromosome 12 are either paternally or maternally derived (pUPD12 and mUPD12, respectively). Both types of UPD12 result in embryos that are non-viable and that exhibit distinct developmental abnormalities. Embryos with pUPD12 die late in gestation, whereas embryos with mUPD12 can survive to term but die perinatally. The mUPD12 conceptuses are invariably growth-retarded while pUPD12 conceptuses exhibit placentomegaly. Skeletal muscle maturation defects are evident in both types of UPD12. In addition, embryos with paternal UPD12 have costal cartilage defects and hypo-ossification of mesoderm-derived bones. In embryos with mUPD12, the development of the neural crest-derived middle ear ossicles is defective. Some of these anomalies are consistent with those seen with uniparental disomies of the orthologous chromosome 14 region in humans. Thus, imprinted genes on chromosome 12 are essential for viability, the regulation of prenatal growth, and the development of mesodermal and neural crest-derived lineages.  相似文献   

20.
Maternal uniparental disomy 22 has no impact on the phenotype.   总被引:7,自引:3,他引:7       下载免费PDF全文
A 25-year-old normal healthy male was karyotyped because five of his wife's pregnancies terminated in spontaneous abortions at 6-14 wk of gestation. Cytogenetic investigation disclosed a de novo balanced Robertsonian t(22q;22q) translocation. Molecular studies revealed maternal only inheritance for chromosome 22 markers. Reduction to homozygosity for all informative markers indicates that the rearranged chromosome is an isochromosome derived from one of the maternal chromosomes 22. Except for the possibility of homozygosity for recessive mutations, maternal uniparental disomy 22 does not seem to have an adverse impact on the phenotype, apart from causing reproductive failure. It can be concluded that no maternally imprinted genes with major effect map to chromosome 22.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号