首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol was developed for rapid and efficient production of transgenic celery plants via somatic embryo regeneration from Agrobacterium tumefaciens- inoculated leaf sections, cotyledons and hypocotyls. These explants were excised from in vitro seedlings of the cvs. XP166 and XP85 and inoculated with A. tumefaciens strain EHA105 containing the binary vector pBISN1. PBISN1 has the neomycin phosphotransferase gene (nptII) and an intron interrupted β-glucuronidase (GUS) reporter gene (gusA). Co-cultivation was carried out for 4 d in the dark on callus induction medium (CIM): Gamborg B5 + 2.79 μM kinetin + 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented with 100 μM acetosyringone. Embryogenic calluses resistant to kanamycin (Km) were then recovered on CIM + 25 mg l−1 Km + 250 mg l−1 timentin after 12 weeks. Subsequently, a large number of Km-resistant and GUS-positive transformants, tens to hundreds per explant were regenerated via somatic embryogenesis on Gamborg B5 + 4.92 μM 6 (γ,γ-dimethylallylamino)-purine (2iP) + 1.93 μM α-naphthaleneacetic acid (NAA) + 25 mg l−1 Km + 250 mg l−1 timentin after 8 weeks. Using this protocol, the transformation frequency was 5.0% and 5.0% for leaf sections, 17.8% and 18.3% for cotyledons, and 15.9% and 16.7% for hypocotyl explants of cvs. XP85 and XP166, respectively. Stable integration of the model transgenes with 1–3 copy numbers was confirmed in all ten randomly selected transgenic events by Southern blot analysis of gusA. Progeny analysis by histochemical GUS assay showed stable Mendelian inheritance of the transgenes. Thus, A. tumefaciens-mediated transformation of cotyledons or hypocotyls provides an effective and reproducible protocol for large-scale production of transgenic celery plants.  相似文献   

2.
The effects of sodium nitroprusside (SNP) on the multiplication, regeneration and rooting of Malus hupehensis Rehd. var. pinyiensis Jiang in tissue culture have been investigated. The results showed that the multiplication of plantlets was promoted significantly by applying 20 μM SNP to the Murashige and Skoog (MS) medium containing 2.0 μM 6-benzylaminopurine (BA) and 1.0 μM zeatin (ZT). Multiplication of plantlets from the 1st subculture was more sensitive to SNP than that from the 4th or 7th subculture. The differentiation and regeneration of adventitious shoots from leaves or cotyledons increased significantly when 20–30 μM SNP was supplied to the medium MS containing 25 μM BA, 2.5 μM α-naphthaleneacetic acid (NAA) and 2.5 μM ZT. Adventitious shoots regeneration frequency from cotyledons was higher than that from leaves at the presence of SNP. The rooting of plantlets was promoted by SNP significantly and the best result for rooting was achieved in the half-strength MS medium containing 75 μM SNP. In addition, adventitious roots without callus distributed at the base of shoots when SNP was supplied.  相似文献   

3.
In vitro mother plants initiated from a mature tree of Sorbus aucuparia, produced numerous propagules on a medium containing 2 μM 6-benzylaminopurine (BAP) and 0.2 μM 1-naphthaleneacetic acid (NAA). These were rooted on a medium containing 0.25 μM NAA and 0.25 μM indole−3-butyric acid. Adventitious shoots were produced on excised leaves and internodes on media containing 10 μM thidiazuron and 0.3–1.0 μM NAA. They formed by direct regeneration in the axils of leaflets of intact leaves. They also developed indirectly, from callus that developed on the rachis of intact leaves, and the cut ends of petioles and internodes. Somatic embryos were produced on cotyledons of zygotic embryos on medium containing 1 μM BAP, 1 μM kinetin, 0.5 μM NAA, 500 mg l−1 casein hydrolysate and 250 mg l−1 glutamine. On basal medium, 69% developed cotyledons and 20% germinated after pre-treatment at 4 °C on medium containing 30 g l−1 maltose.  相似文献   

4.
Summary Regeneration of adventitious shoots from the medicinal plant Nothapodytes foetida (Weight) Sleumer Syn. Mappia foetida (family Ieacinaceceae) has been achieved using different seedling explants. Direct, regeneration of shoot buds was observed in Murashige and Skoog's (MS) basal medium supplemented with various concentrations of thidiazuron. The optimum levels of thidiazuron concentrations were 0.91–4.45 μM. Leaf explants formed more shoots followed by hypocotyls or cotyledons. The shoot buds elongated and rooted on MS basal medium with N6-benzyladenine (0.88–2.22 μM) and indole-3-butyric acid (0.49 μM).  相似文献   

5.
Flower buds, cotyledons and hypocotyls of Pharbitis nil were used as plant material. Flower buds (1–2 mm long) were excised from 3-week-old plants, grown in soil. Cotyledons of 7-day-old sterile seedlings were cut into 25 mm2 squares cotyledons whereas hypocotyls were cut to 1 mm long fragments. Explants were transferred into Petri dishes containing the Murashige and Skoog medium (MS), supplemented with either BA (11 μM·L−1) alone or BA (22 μM·L−1) and NAA (0.55 μM·L−1), and different sugars: sucrose, fructose, glucose, mannose or sorbitol (autoclaved or filter-sterilized). Addition of glucose instead of sucrose to the medium stimulated the induction of callus on flower buds and cotyledonary explants, but inhibited its growth on fragments of hypocotyls. The medium supplemented with fructose (especially filter-sterilized) stimulated the development of flower elements. Organogenesis of shoots and roots on explants was also observed. Flower buds and hypocotyls were able to regenerate both organs. Addition of fructose or glucose to the medium stimulated the organogenesis of shoots, whereas root organogenesis was inhibited on all explants used. Sorbitol strongly inhibited both induction of callus and organogenesis on all explants used.  相似文献   

6.
A novel protocol for indirect shoot organogenesis of Dieffenbachia cv. Camouflage was established using leaf explants excised from in vitro shoot cultures. The frequency of callus formation reached 96% for explants cultured on Murashige and Skoog (1962) basal medium supplemented with 5 μM thidiazuron and 1 μM 2,4-dichlorophenozyacetic acid. The number of shoots regenerated was high, with up to 7.9 shoots produced per callus cultured on basal medium supplemented with 40 μM N 6-(Δ2-isopentenyl)adenine and 2 μM indole-3-acetic acid. Regenerated shoots rooted well in a soilless substrate, acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions. Somaclonal variations in leaf variegation, color, and morphology have been observed in regenerated plants.  相似文献   

7.
Root, hypocotyl and cotyledon explants of Sesbania bispinosa, Sesbania cannabina, Sesbania formosa, and Sesbania sesban were cultured on Murashige and Skoog medium with benzyladenine (BA; 2.22, 4.44, 8.88 M) in combination with 2,4-dichlorophenoxyacetic acid (2,4-d; 2.26, 4.52, 9.05 M), indolebutyric acid (IBA; 0.25, 0.49, 4.92 M) or naphthaleneacetic acid (NAA; 2.69, 5.37, 10.74 M). Although all explant types developed some callus, callus occurred earliest and continued to grow fastest with hypocotyls. Media including 2.4-d or NAA gave the fastest growing callus. Callus was subcultured up to 10 times at 20-day intervals and retained a rapid growth rate. Shoots regenerated readily from both hypocotyls or cotyledons but not from roots. Shoot organogenesis was most frequent with IBA (0.25–4.92 M) in combination with BA (4.44–8.88 M) and did not occur with 2,4-d. With each species at least one medium induced shoot differentiation from more than 50 percent of the callus pieces. With one exception, media containing IBA that induced shoot organogenesis on explants also did so in callus, but media containing NAA, even when effective with explants, did not cause differentiation of callus. Shoots that differentiated were excised and cultured on MS medium without growth regulators or with IBA (2.46, 4.92, 9.84 M). Roots developed after 3–8 days on an appropriate rooting medium, often without IBA. Rooted plantlets were transplanted to pots in a greenhouse and developed into normal plants. Suitable media and protocols for initiating and subculturing callus and regenerating whole plants in vitro from callus and explants have thus been established for four species of Sesbania.  相似文献   

8.
Summary An efficient plant regeneration system employing cotyledons, hypocotyls, petioles and leaves as explants and characterized by continuous and prolific production of somatic embryos, has been developed with Medicago arborea ssp. arborea. The optimal somatic embryogenic response was obtained using a two-step protocol, where explants were incubated under a 16 h photoperiod for 2 mo. on Murashige and Skoog (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D; 9 μM) and kinetin (9 μM), and followed by transfer to kinetin-free MS medium with 2,4-D (2.25 μM). Removal of the cytokinin and a reduction in the concentration of auxin (2.25 μM) in the second step of culture were critical for enhanced production of somatic embryos. The best explants proved to be cotyledons and petioles (i.e. a mean of 18.0±0.70 somatic embryos at 3 mo. for petiole culture). Somatic embryos were converted into normal plantlets (8.0±0.89%) when cultured on basal MS medium with 5 μM indolebutyric acid. No somatic embryos were obtained when thidiazuron was used in the culture media. Using petioles as explants and N6-benzyladenine (BA), embryogenesis was induced in the second step of culture when BA was removed from the medium and the concentration of 2,4-D was decreased to 2.25 μM.  相似文献   

9.
Summary Mature zygotic embryos of eight (open-pollinated) families of loblolly pine (Pinus taeda L.) were cultured on eight different basal salt formulations, each supplemented with 36.2 μM 2,4-dichlorophenoxyacetic acid, 17.8 μM 6-benzyladenine, 18.6 μM kinetin, 500 mg l−1 casein hydrolysate, and 500 mg l−1 l-glutamine for 9 wk; embryogenic tissue was formed on cotyledons, hypocotyls, and radieles of mature zygotic embryos. Callus was subcultured on the callus proliferation medium, the same as the induction medium but with one-fifth concentration of auxin and cytokinin for 9 wk. On this medium a white to translucent, glossy, mucilaginous embryogenic callus containing embryogenic suspensor masses (ESMs) was obtained. The highest frequency of explants forming embryogenic tissue, 17%, occurred on a modified Murashige and Skoog salts basal medium containing the concentration of KNO3, Ca(NO3)2·4H2O, NH4NO3, KCl, ZnSO4·7H2O, and MnSO4·H2O, 720, 1900, 400, 250, 25.8, and 25.35 mg l−1, respectively. Embryogenic suspension cultures were established by culturing embryogenic callus in liquid callus proliferation medium. Liquid cultures containing ESMs were transferred to medium containing abscisic acid, polyethylene glycols, and activated charcoal for stimulating the production of cotyledonary somatic embryos. Mature somatic embryos germinated for 4–12 wk on medium containing indole-butyric acid, gibberellic acid, 6-benzyladenine, activated charcoal, and reduced sucrose concentration (15 g l−1). Two hundred and ninety-one regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1∶1∶1) mixture, then the plants were transplanted to soil in the earth, and 73 plantlets survived in the field.  相似文献   

10.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

11.
Nodular meristematic callus was induced on the basal cut surface of apical shoot explants of salvia cultured on Murashige and Skoog (MS) medium supplemented with 4.5, 13.5, or 22.5 μM thidiazuron (TDZ). Cultures were incubated in the dark for 1 wk and then transferred to light conditions for 4 wk. A higher percentage of explants developing callus was observed on medium containing either 4.5 or 13.5 μM TDZ, although explants on 4.5 μM developed larger calluses. The callus was maintained on medium containing 4.5 μM TDZ and 0.45 mM ascorbic acid. Shoot differentiation, after each of three successive maintenance passages, was induced from callus grown on medium containing either 4.4 or 8.8 μM benzyladenine (BA). A greater number of shoots were harvested from callus differentiated on BA (4.4 or 8.8 μM) medium with 0.45 mM ascorbic acid added. Shoots developed roots on MS medium supplemented with 4.9 μM of indole-3-butyric acid. The addition of ascorbic acid to the shoot differentiation medium enhanced rooting, number of roots per shoot, and survival rate. Approximately 75% in vitro plantlets were acclimatized to ex vitro conditions. Histological investigations confirmed both adventitious meristem initiation during the callus induction phase, and subsequent organogenic shoot development on the differentiation medium. The novel protocol for the meristematic callus induction and plant regeneration in this study may be useful for biotechnological applications for salvia improvement via genetic transformation or mutagenesis and in vitro propagation approaches.  相似文献   

12.
Organogenic cultures were induced from zygotic embryo and megagametophyte explants of the Central American cycad species, Dioon edule. Plant growth medium consisted of B5 major salts, Murashige and Skoog minor salts and organics, 400 mg l−1 glutamine, 100 mg l−1 arginine, 100 mg l−1 asparagine, 60 g l−1 sucrose, 8 g l−1 Difco Bacto agar and was supplemented with kinetin (0 – 13.94 μM) and 2,4-dichlorophenoxyacetic acid (2,4-D) (0 – 9.05 μM) arranged as a 5×4 factorial in a randomized block design. Callus initiation occurred on a wide range of medium formulations from megagametophyte explants; however, shoot formation occurred only on medium supplemented with 2.26 μM 2,4-D. In comparison, callus initiation from explanted zygotic embryos occurred on fewer medium formulations, and adventitious shoot induction occurred from callus on formulations with 9.29–13.94 μM kinetin + 0.45–9.05 μM 2,4-D. Rooted shoots, derived from megagametophyte and zygotic embryo cultures, have been regenerated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Summary For the first time, regenerated plantlets were obtained from immature zygotic embryos of mango (Mangifera indica L.) through direct somatic embryogenesis. Pro-embryogenic mass (PEM)-like structures, which are differentiated as clusters of globular structures, were easily induced directly from the abaxial side of cotyledons from immature fruits, 2.0–3.5 cm diameter by a 2-wk culture period on a modified Murashige and Skoog medium with 5 mgl−1 (25μM) indole-3-butyric acid (IBA). Conversion of somatic embryos into plantlets was achieved after 4 wk of culture on the conversion medium containing 5mgl−1 (23 μM) kinetin. Secondary somatic embryogenesis could also be obtained directly from the hypocotyls of mature primary somatic embryos cultured on the conversion medium. In our experimental system, only minor problems were noted with browning of cultures.  相似文献   

14.
In vitro morphogenesis via organogenesis was achieved from callus cultures derived from hypocotyl explants of Acacia sinuata on MS (Murashige and Skoog, 1962) medium. Calli were induced from hypocotyl explants excised from 7-day-old seedlings on MS medium containing 3% sucrose, 0.8% agar, 6.78 μM 2,4-dichlorophenoxyacetic acid and 2.22 μM 6-benzylaminopurine. Regeneration of adventitious buds from callus was achieved when they were cultured on MS medium supplemented with 10% coconut water, 13.2 μM 6-benzylaminopurine and 3.42 μM indoleacetic acid. Addition of gibberellic acid (1.73 μM) favored shoot elongation. Regenerated shoots produced prominent roots when transferred to half strength MS medium supplemented with 7.36 μM indolebutyric acid. Rooted plantlets, thus developed were hardened and successfully established in the soil. This protocol yielded an average of 20 plants per hypocotyl explant over a period of 4 months. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
In Alstroemeria high frequencies of compact embryogenic callus (CEC) induction (40%) and friable embryogenic callus (FEC) induction (15%) were obtained from nodes with axil tissue cultured first on a Murashige and Skoog (MS) medium supplemented with 10 μM thidiazuron and 0.5 μM indole-3-butyric acid and after that on a Schenk and Hildebrandt (SH) medium supplemented with 9.1 μM 2,4-dichlorophenoxy acetic acid and 2.2 μM benzylaminopurine (BA). Both types of callus were maintained on modified MS medium supplemented with 20.8 μM picloram. CEC and FEC formed somatic embryos and subsequently plants when transferred to MS medium supplemented with 2.2 μM BA. Plants were produced after 12 weeks (CEC) or after 16 weeks (FEC) of culture. Regenerated plants were established in the greenhouse and flowered normally.  相似文献   

16.
In vitro regeneration of Acacia mangium via organogenesis   总被引:1,自引:0,他引:1  
Plant regeneration of Acacia mangium was achieved through organogenesis in callus cultures. Calli were induced from five types of explants (embryo axes and cotyledons of mature zygotic embryos as well as leaflets, petioles and stems of seedlings) of A. mangium on MS (Murashige and Skoog, 1962) basal medium containing 9.05 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 13.95 μM kinetin (KT). Green or green purple compact nodules containing clusters of meristematic centers were induced in these calli after transfer to MS basal medium containing 1.14–22.75 μM thidiazuron (TDZ) and 1.43–2.86 μM indole-3-acetic acid (IAA). A combination of 4.55 μM TDZ and 1.43 μM IAA promoted the highest percentage of calli to form nodules, in 8–11% of calli derived from cotyledons, embryo axes, leaflets or petiole and in 4% of calli derived from stems. Twenty-two percent of the nodules formed adventitious shoots on MS basal medium containing 0.045 μM TDZ. Shoots were elongated on MS medium containing 0.045 μM TDZ supplemented with 7.22 μM gibberellic acid. The medium containing 10.75 μM NAA and 2.33 μM KT promoted rooting of 10% of the elongated shoots. Plantlets grew up well in the green house. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Hypocotyl, cotyledon and zygotic embryo explants from two Tunisian Cucumis melo L. cultivars Beji and Maazoun, cultured on the MS medium added with 2,4-D (0.25–1 mg l−1) and BA (0.10–0.50 mg l−1), produce calluses with somatic embryos after 3 weeks of culture. For Beji c.v. the highest percentage (62.50%) of embryogenesis was observed for cotyledons. The average embryo number per callus was 10.40. Embryogenesis induction for zygotic embryos reached 33.50% with 29 embryos per callus. The embryogenesis ability of hypocotyls did not exceed 12.50% (2.50 embryos per callus). Somatic embryogenesis for Maazoun c.v. explants was less efficient. Embryos formation was observed only for cotyledons (29%) and zygotic embryos (25%). Cotyledonary staged embryos, when transferred to hormone free MS medium, germinated. The maximum germination rates were 51.50 and 44.50%, respectively for Maazoun and Beji c.v. The highest percentage (36.50%) of survival plants was noted for Beji c.v. Regenerants were diploids (2n = 2x = 24) and morphologically similar to their parents issued from seeds.  相似文献   

18.
Summary A procedure has been outlined for plant regeneration of an important medicinal shrub, Holarrhena antidysenterica, through shoot segment-derived callus. Explants used for callus induction were shoot segments derived from 14-d-old axenic plants on Murashige and Skoog (MS) medium supplemented with 15 μM N6-benzyladenine (BA). A white friable type of callus was obtained in 4.52 μM 2,4-dichlorophenoxyacetic acid and 2.32 μM kinetin which did not have the potentiality to regenerate. High-frequency shoot differentiation was achieved on transferring the friable callus to MS medium supplemented with 17.8 μM BA and 8.0 μM naphthaleneacetic acid. The highest percentage of calluses forming shoots (65.06±2.26) was achieved in this medium. The organogenetic potential of the regenerating callus was influenced by the age of the culture. Rooting was achieved on the shoots using MS medium with 25 μM indolebutyric acid. The plantlets were acclimatized and established in soil. The regenerated plants were morphologically uniform and exhibited similar growth characteristics and vegetative morphology to the donor plants.  相似文献   

19.
Summary A protocol has been developed for plantlet regeneration from seed callus of Bixa orellana L. Seeds demonstrated a high percentage of callus induction (63±7.3%) and a high yield (356±14.7 mg per seed) of white friable callus on Murashige and Skoog (MS) medium containing 5.0 μM l-naphthaleneacetic acid (NAA) and 2.5μM N 6-benzyladenine (BA) within 6 wk of culture in the dark. Callus induction frequency was greater under 24h dark as compared to 16h light/8h dark photoperiod or 24h light photoperiod. Increased myo-inositol (MI: 200mgl−1) and addition of ascorbic acid (AA: 200 mgl−1) to the culture medium positively improved callus induction frequency and growth. Shoot differentiation from white friable seed callus was best using 10.0 μM BA and 5.0 μM NAA, where the highest percentage of calluses forming shools (74.9±4.8%), the highest number of shoots per callus (six or seven) and the highest shoot-forming index (5.0) were obtained within 6 wk. Shoots elongated to 4 cm within 4 wk of transfer onto MS medium devoid of growth regulators. Shoots were rooted using half-strength MS medium containing 5.0 μM indole-3-butyric acid (IBA). About 85% of these plants were established in pots containing pure garden soil and organic manure after 3 wk of hardening. Regenerated plants were morphologically uniform with normal leaf, shape and growth patterns. These plants are currently being screened for the presence of agronomically useful genetic variants.  相似文献   

20.
Summary In vitro propagation of Quassia amara L. (Simaroubaceae) was attempted using mature and juvenile explants. Attempts to establish in vitro culture using leaf and internode explants from a plant more than 15yr old were unsuccessful due to severe phenolic exudation. Plant regeneration through direct and indirect somatic embryogenesis was established from cotyledon explants. Murashige and Skoog (MS) medium with 8.9 μM N6-benzyladenine (BA) and 11.7 μM silver nitrate induced the highest number (mean of 32.4 embryos per cotyledon) of somatic embryos. Direct somatic embryogenesis as well as callus formation was observed on medium with BA (8.9–13.3 μM). Semi-mature pale green cotyledons were superior for the induction of somatic embryos. Embryos developed from the adaxial side as well as from the point of excision of the embryonic axis. More embryos were developed on the proximal end compared to mid and distal regions of the cotyledons. Subculture of callus (developed along with the somatic embryos on medium with BA alone) onto medium containing 8.9 μM BA and 11.7 μM silver nitrate produced a mean of 17.1 somatic embryos. Primary somatic embryos cultured on MS medium with 8.9 μM BA and 11.7μM silver nitrate produced a mean of 9.4 secondary somatic embryos. Most of the embryos developed up to early cotyledonary stage. Reduced concentration of BA (2.2 or 4.4 μM) improved maturation and conversion of embryos to plantlets. Ninety percent of the embryos converted to plantlets. The optimized protocol facilitated recovery of 30 plantlets per cotyledon explant within 80d. Plantlets transferred to small cups were subsequently transferred to field conditions with a survival rate of 90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号