共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaoqing Wu Yong Liu Wenying Wang Kate Crimmings Andrea Williams Jesse Mager Wei Cui 《Molecular reproduction and development》2023,90(2):98-108
As a highly conserved DNA polymerase (Pol), Pol δ plays crucial roles in chromosomal DNA synthesis and various DNA repair pathways. However, the function of POLD2, the second small subunit of DNA Pol δ (p50 subunit), has not been characterized in vivo during mammalian development. Here, we report for the first time, the essential role of subunit POLD2 during early murine embryogenesis. Although Pold2 mutant mouse embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at gastrulation stages. Outgrowth assays reveal that mutant blastocysts cannot hatch from the zona pellucida, indicating impaired blastocyst function. Notably, these phenotypes can be recapitulated by small interfering RNA (siRNA)-mediated knockdown, which also exhibit slowed cellular proliferation together with skewed primitive endoderm and epiblast allocation during the second cell lineage specification. In summary, our study demonstrates that POLD2 is essential for the earliest steps of mammalian development, and the retarded proliferation and embryogenesis may also alter the following cell lineage specifications in the mouse blastocyst embryos. 相似文献
2.
Nishiyama M Nakayama K Tsunematsu R Tsukiyama T Kikuchi A Nakayama KI 《Molecular and cellular biology》2004,24(19):8386-8394
The Wnt signaling pathway plays a pivotal role in vertebrate early development and morphogenesis. Duplin (axis duplication inhibitor) interacts with beta-catenin and prevents its binding to Tcf, thereby inhibiting downstream Wnt signaling. Here we show that Duplin is expressed predominantly from early- to mid-stage mouse embryogenesis, and we describe the generation of mice deficient in Duplin. Duplin(-/-) embryos manifest growth retardation from embryonic day 5.5 (E5.5) and developmental arrest accompanied by massive apoptosis at E7.5. The mutant embryos develop into an egg cylinder but do not form a primitive streak or mesoderm. Expression of beta-catenin target genes, including those for T (brachyury), Axin2, and cyclin D1, was not increased in Duplin(-/-) embryos, suggesting that the developmental defect is not simply attributable to upregulation of Wnt signaling caused by the lack of this inhibitor. These results suggest that Duplin plays an indispensable role, likely by a mechanism independent of inhibition of Wnt signaling, in mouse embryonic growth and differentiation at an early developmental stage. 相似文献
3.
Small nuclear ribonucleoproteins (snRNPs) are particles present only in eukaryotic cells. They are involved in a large variety of RNA maturation processes, most notably in pre-mRNA splicing. Several of the proteins typically found in snRNPs contain a sequence signature, the Sm domain, conserved from yeast to mammals. By using a promoter trap strategy to target actively transcribed loci in murine embryonic stem cells, a new murine gene encoding an Sm motif-containing protein was identified. Database searches revealed that it is the mouse orthologue of Lsm4p, a protein found in yeast and human cells and putatively associated with U6 snRNA. Introduction of the geo reporter gene cassette under the control of the murine Lsm4 (mLsm4) endogenous promoter showed that the gene was ubiquitously transcribed in embryonic and adult tissues. The insertion of the geo cassette disrupted the mLsm4 allele, and homozygosity for the mutation led to a recessive embryonic lethal phenotype. mLsm4-null zygotes survived to the blastocyst stages, implanted into the uterus, but died shortly thereafter. The early death of mLsm4p-null mice suggests that the role of mLsm4p in splicing is essential and cannot be compensated by other Lsm proteins. 相似文献
4.
Early embryonic lethality of H ferritin gene deletion in mice 总被引:17,自引:0,他引:17
Ferreira C Bucchini D Martin ME Levi S Arosio P Grandchamp B Beaumont C 《The Journal of biological chemistry》2000,275(5):3021-3024
Ferritin molecules play an important role in the control of intracellular iron distribution and in the constitution of long term iron stores. In vitro studies on recombinant ferritin subunits have shown that the ferroxidase activity associated with the H subunit is necessary for iron uptake by the ferritin molecule, whereas the L subunit facilitates iron core formation inside the protein shell. However, plant and bacterial ferritins have only a single type of subunit which probably fulfills both functions. To assess the biological significance of the ferroxidase activity associated with the H subunit, we disrupted the H ferritin gene (Fth) in mice by homologous recombination. Fth(+/-) mice are healthy, fertile, and do not differ significantly from their control littermates. However, Fth(-/-) embryos die between 3.5 and 9.5 days of development, suggesting that there is no functional redundancy between the two ferritin subunits and that, in the absence of H subunits, L ferritin homopolymers are not able to maintain iron in a bioavailable and nontoxic form. The pattern of expression of the wild type Fth gene in 9.5-day embryos is suggestive of an important function of the H ferritin gene in the heart. 相似文献
5.
Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene 下载免费PDF全文
Dackor RT Fritz-Six K Dunworth WP Gibbons CL Smithies O Caron KM 《Molecular and cellular biology》2006,26(7):2511-2518
Adrenomedullin (AM) is a multifunctional peptide vasodilator that is essential for life. To date, numerous in vitro studies have suggested that AM can mediate its biological effects through at least three different receptors. To determine the in vivo importance of the most likely candidate receptor, calcitonin receptor-like receptor, a gene-targeted knockout model of the gene was generated. Mice heterozygous for the targeted Calcrl allele appear normal, survive to adulthood, and reproduce. However, heterozygote matings fail to produce viable Calcrl-/- pups, demonstrating that Calcrl is essential for survival. Timed matings confirmed that Calcrl-/- embryos die between embryonic day 13.5 (E13.5) and E14.5 of gestation. The Calcrl-/- embryos exhibit extreme hydrops fetalis and cardiovascular defects, including thin vascular smooth muscle walls and small, disorganized hearts remarkably similar to the previously characterized AM-/- phenotype. In vivo assays of cellular proliferation and apoptosis in the hearts and vasculature of Calcrl-/- and AM-/- embryos support the concept that AM signaling is a crucial mediator of cardiovascular development. The Calcrl gene targeted mice provide the first in vivo genetic evidence that CLR functions as an AM receptor during embryonic development. 相似文献
6.
K Yamamoto Y Wang W Jiang X Liu RL Dubois CS Lin T Ludwig CJ Bakkenist S Zha 《The Journal of cell biology》2012,196(3):305-313
Studies on cell division traditionally focus on the mechanisms of chromosome segregation and cytokinesis, yet we know comparatively little about how organelles segregate. Analysis of organelle partitioning in asymmetrically dividing cells has provided insights into the mechanisms through which cells control organelle distribution. Interestingly, these studies have revealed that segregation mechanisms frequently link organelle distribution to organelle growth and formation. Furthermore, in many cases, cells use organelles, such as the endoplasmic reticulum and P granules, as vectors for the segregation of information. Together, these emerging data suggest that the coordination between organelle growth, division, and segregation plays an important role in the control of cell fate inheritance, cellular aging, and rejuvenation, i.e., the resetting of age in immortal lineages. 相似文献
7.
Park ES Choi S Kim JM Jeong Y Choe J Park CS Choi Y Rho J 《Biochemical and biophysical research communications》2007,363(4):971-977
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are key adaptor molecules in the TNFR-signaling complexes that promote a wide variety of signaling cascades including cell proliferation, activation, differentiation, and apoptosis. TRAF-interacting protein (TRIP) is required for the inhibitory regulation of TNF-induced NF-κB signaling via the TNFR/TRAF-signaling complexes in vitro. TRIP also directly interacts with the familial cylindromatosis tumor suppressor gene (CYLD) and negatively regulates NF-κB activation in vitro. However, although there appears to be a relationship between TRIP, the TRAFs and also CYLD as modulators of NF-κB signaling in vitro, the functional role of TRIP in vivo is still unclear. To identify the role of TRIP in vivo, we have generated TRIP-deficient mice. Homozygous mouse embryos were found to die shortly after implantation due to proliferation defects and excessive cell death. These results indicate that TRIP is an essential factor during early mouse embryonic development in vivo. 相似文献
8.
The incidence of spontaneously occurring deciduomata is considerably higher in T-stock than in (C3H X C57BL)F1 females. The basis for this difference was studied in vivo, by means of embryo transplantation procedure, and in vitro, by means of short-term embryo culture. Both studies indicate that strain differences in the incidence of spontaneous deciduomata may be largely, if not wholly, accounted for by genetic differences between embryos themselves expressed in terms of the rate of development during the preimplantation period and in the ability to survive the preimplantation and early implantation environment. 相似文献
9.
Embryonic lethality caused by apoptosis during gastrulation in mice lacking the gene of the ADP-ribosylation factor-related protein 1 下载免费PDF全文
Mueller AG Moser M Kluge R Leder S Blum M Büttner R Joost HG Schürmann A 《Molecular and cellular biology》2002,22(5):1488-1494
ADP-ribosylation factor (ARF)-related protein 1 (ARFRP1) is a membrane-associated GTPase with significant similarity to the family of ARFs. We have recently shown that ARFRP1 interacts with the Sec7 domain of the ARF-specific guanine nucleotide exchange factor Sec7-1/cytohesin and inhibits the ARF/Sec7-dependent activation of phospholipase D in a GTP-dependent manner. In order to further analyze the function of ARFRP1, we cloned the mouse Arfrp1 gene and generated Arfrp1 null-mutant mice by gene targeting in embryonic stem cells. Heterozygous Arfrp1 mutants developed normally, whereas homozygosity for the mutant allele led to embryonic lethality. Cultured homozygous Arfrp1 null-mutant blastocysts were indistinguishable from wild-type blastocysts. In vivo, they implanted and formed egg cylinder stage embryos that appeared normal until day 5. Between embryonic days 6 and 7, however, apoptotic cell death of epiblast cells occurred in the embryonic ectoderm during gastrulation, as was shown by histological analysis combined with terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling. Epiblast cells that would normally differentiate to mesodermal cells detached from the ectodermal cell layer and were dispersed into the proamniotic cavity. In contrast, the development of extraembryonic structures appeared unaffected. Our results demonstrate that ARFRP1 is necessary for early embryonic development during gastrulation. 相似文献
10.
11.
12.
Mikula M Schreiber M Husak Z Kucerova L Rüth J Wieser R Zatloukal K Beug H Wagner EF Baccarini M 《The EMBO journal》2001,20(8):1952-1962
The Raf kinases play a key role in relaying signals elicited by mitogens or oncogenes. Here, we report that c-raf-1(-/-) embryos are growth retarded and die at midgestation with anomalies in the placenta and in the fetal liver. Although hepatoblast proliferation does not appear to be impaired, c-raf-1(-/-) fetal livers are hypocellular and contain numerous apoptotic cells. Similarly, the poor proliferation of Raf-1(-/-) fibroblasts and hematopoietic cells cultivated in vitro is due to an increase in the apoptotic index of these cultures rather than to a cell cycle defect. Furthermore, Raf-1- deficient fibroblasts are more sensitive than wild- type cells to specific apoptotic stimuli, such as actinomycin D or Fas activation, but not to tumor necrosis factor-alpha. MEK/ERK activation is normal in Raf-1-deficient cells and embryos, and is probably mediated by B-RAF. These results indicate that the essential function of Raf-1 is to counteract apoptosis rather than to promote proliferation, and that effectors distinct from the MEK/ERK cascade must mediate the anti-apoptotic function of Raf-1. 相似文献
13.
DNA ligases catalyze the joining of strand breaks in the phosphodiester backbone of duplex DNA and play essential roles in DNA replication, recombination, repair, and maintenance of genomic integrity. Three mammalian DNA ligase genes have been identified, and their corresponding ligases play distinct roles in DNA metabolism. DNA ligase III is proposed to be involved in the repairing of DNA single-strand breaks, but its precise role has not yet been demonstrated directly. To determine its role in DNA repair, cellular growth, and embryonic development, we introduced targeted interruption of the DNA ligase III (LIG3) gene into the mouse. Mice homozygous for LIG3 disruption showed early embryonic lethality. We found that the mutant embryonic developmental process stops at 8.5 days postcoitum (dpc), and excessive cell death occurs at 9.5 dpc. LIG3 mutant cells have relatively normal XRCC1 levels but elevated sister chromatid exchange. These findings indicate that DNA ligase III is involved in essential DNA repair activities required for early embryonic development and therefore cannot be replaced by other DNA ligases. 相似文献
14.
15.
Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice 总被引:3,自引:0,他引:3
Xin Wang Raghavendra Pralhada Rao Teresa Kosakowska-Cholody M. Athar Masood Eileen Southon Helin Zhang Cyril Berthet Kunio Nagashim Timothy K. Veenstra Lino Tessarollo Usha Acharya Jairaj K. Acharya 《The Journal of cell biology》2009,184(1):143-158
Ceramide transfer protein (CERT) functions in the transfer of ceramide from the endoplasmic reticulum (ER) to the Golgi. In this study, we show that CERT is an essential gene for mouse development and embryonic survival and, quite strikingly, is critical for mitochondrial integrity. CERT mutant embryos accumulate ceramide in the ER but also mislocalize ceramide to the mitochondria, compromising their function. Cells in mutant embryos show abnormal dilation of the ER and degenerating mitochondria. These subcellular changes manifest as heart defects and cause severely compromised cardiac function and embryonic death around embryonic day 11.5. In spite of ceramide accumulation, CERT mutant mice do not die as a result of enhanced apoptosis. Instead, cell proliferation is impaired, and expression levels of cell cycle–associated proteins are altered. Individual cells survive, perhaps because cell survival mechanisms are activated. Thus, global compromise of ER and mitochondrial integrity caused by ceramide accumulation in CERT mutant mice primarily affects organogenesis rather than causing cell death via apoptotic pathways. 相似文献
16.
17.
Nishii K Kumai M Egashira K Miwa T Hashizume K Miyano Y Shibata Y 《Cell communication & adhesion》2003,10(4-6):365-369
The gap junction protein connexin45-deficient (Cx45-KO) mice die shortly after the hearts begin to beat. In addition to the heart defect, they also show defective vascular development which may be closely related with the cardiac phenotype. Therefore, we created mice whose floxed-Cx45 locus could be removed conditionally. We utilized cardiac alpha-actin-Cre transgenic mice to investigate the specific cardiac muscular function of Cx45 in vivo. The resultant conditional mutants were lethal, showing conduction block similar to that of the Cx45-KO mice. Unlike Cx45-KO, development of the endocardial cushion was not disrupted in the conditional mutants. X-gal staining was detected in the embryonic cardiac myocytes as a hallmark of Cre-loxP mediated floxed-Cx45 deletion. These results reconfirm the requirement of Cx45 for developing cardiac myocytes. These also indicate that establishing the first contractions is a crucial task for the early hearts. 相似文献
18.
JA Daniel M Pellegrini BS Lee Z Guo D Filsuf NV Belkina Z You TT Paull BP Sleckman L Feigenbaum A Nussenzweig 《The Journal of cell biology》2012,198(3):295-304
Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis. 相似文献
19.
Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein 下载免费PDF全文
Artus J Vandormael-Pournin S Frödin M Nacerddine K Babinet C Cohen-Tannoudji M 《Molecular and cellular biology》2005,25(14):6289-6302
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. 相似文献
20.
Suh YH Yoshimoto-Furusawa A Weih KA Tessarollo L Roche KW Mackem S Roche PA 《PloS one》2011,6(3):e18444
SNARE-mediated membrane fusion is a pivotal event for a wide-variety of biological processes. SNAP-25, a neuron-specific SNARE protein, has been well-characterized and mouse embryos lacking Snap25 are viable. However, the phenotype of mice lacking SNAP-23, the ubiquitously expressed SNAP-25 homolog, remains unknown. To reveal the importance of SNAP-23 function in mouse development, we generated Snap23-null mice by homologous recombination. We were unable to obtain newborn SNAP-23-deficient mice, and analysis of pre-implantation embryos from Snap23(Δ/wt) matings revealed that Snap23-null blastocysts were dying prior to implantation at embryonic day E3.5. Thus these data reveal a critical role for SNAP-23 during embryogenesis. 相似文献