首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A neutral sphingomyelinase which cleaves phosphorylcholine from sphingomyelin at a pH optima of 7.4 was purified 440-fold to apparent homogeneity from normal human urine concentrate employing Sephadex G-75 column chromatography, preparative isoelectric focusing, and sphingosylphospholcholine CH-Sepharose column chromatography. The enzyme is composed of a single polypeptide whose apparent molecular weight is 92,000. Analytical isoelectric focusing revealed that the pI of this enzyme is 6.5. Purified neutral sphingomyelinase was devoid of beta-galactosidase and beta-N-acetylglucosaminidase activity originally present in the urine concentrate. The purified neutral sphingomyelinase (N-SMase) had low levels of phospholipase A1 and A2 activity when phosphatidylcholine was used as a substrate and detergents were included in the assay mixture. However, it had no phospholipase activity toward phosphatidylglycerol and sphingomyelin at pH 4.5 irrespective of the presence or absence of detergents. Monospecific polyclonal antibodies raised against N-SMase immunoprecipitated approximately 70% of N-SMase activity from urine, human kidney proximal tubular cells, and partially purified membrane-bound N-SMase from these cells. Western immunoblot assays revealed that the monospecific polyclonal antibody against urinary N-SMase recognized both the urinary N-SMase and the membrane-bound N-SMase. Because this enzyme is distinct biochemically and immunologically as compared to acid sphingomyelinase (EC 3.1.4.12), we would like to assign it an enzyme catalog number of EC 3.1.4.13. The availability of N-SMase and corresponding antibody will be useful in studying various aspects of this enzyme in biological systems.  相似文献   

2.
The magnesium-dependent, plasma membrane-associated neutral sphingomyelinase (N-SMase) catalyzes hydrolysis of membrane sphingomyelin to form ceramide, a lipid signaling molecule implied in intracellular signaling. We report here the biochemical purification to apparent homogeneity of N-SMase from bovine brain. Proteins from Nonidet P-40 extracts of brain membranes were subjected to four purification steps yielding a N-SMase preparation that exhibited a specific enzymatic activity 23,330-fold increased over the brain homogenate. When analyzed by two-dimensional gel electrophoresis, the purified enzyme presented as two major protein species of 46 and 97 kDa, respectively. Matrix-assisted laser desorption/ionization-mass spectrometry analysis of tryptic peptides revealed at least partial identity of these two proteins. Amino acid sequencing of tryptic peptides showed no apparent homologies of bovine N-SMase to any known protein. Peptide-specific antibodies recognized a single 97-kDa protein in Western blot analysis of cell lysates. The purified enzyme displayed a K(m) of 40 microM for sphingomyelin with an optimal activity at pH 7-8. Bovine brain N-SMase was strictly dependent on Mg(2+), whereas Zn(2+) and Ca(2+) proved inhibitory. The highly purified bovine N-SMase was effectively blocked by glutathione and scyphostatin. Scyphostatin proved to be a potent inhibitor of N-SMase with 95% inhibition observed at 20 microM scyphostatin. The results of this study define a N-SMase that fulfills the biochemical and functional criteria characteristic of the tumor necrosis factor-responsive membrane-bound N-SMase.  相似文献   

3.
We have previously shown that cultured human proximal tubular cells (PT) incubated with gentamicin contain numerous "myeloid bodies." This morphological change was accompanied by the storage of phosphatidylcholine and sphingomyelin. In order to delineate the biochemical mechanisms responsible for the accumulation of sphingomyelin in cells incubated with gentamicin, we pursued detailed studies on the activity of sphingomyelinase. Characterization studies on sphingomyelinase revealed that this enzyme has a bimodal pH optima in PT cells. Optimum activity was observed at pH 5.6 (designated as acid sphingomyelinase, A-SMase) and at pH 7.4 (designated as neutral sphingomyelinase, N-SMase). The activity of both the enzymes increased proportionately in control cells as a function of days of incubation. The activity of A-SMase was 16% lower in cells incubated with gentamicin as compared to control. The most striking observation was a gradual decline in the activity of N-SMase in cells incubated with gentamicin. Thus, following 21 days of incubation of cells with 0.3 mM gentamicin, the N-SMase was 2.7-fold lower than control cells. Mg2+ stimulated and Triton X-100 inhibited the activity of N-SMase. Whereas Mg2+ had no effects, Triton X-100 stimulated the activity of the A-SMase in PT cells. Moreover, A-SMase was relatively more heat-resistant than the N-SMase. The Km values for sphingomyelin using A-SMase in control cells and cells incubated with gentamicin were 0.07 X and 0.016 X 10(-7) M, respectively, whereas the Km values for sphingomyelin using N-SMase in control cells and cells incubated with gentamicin were 1.8 X and 1.5 X 10(-7) M, respectively. These findings suggest that gentamicin exerts a competitive inhibition of the A-SMase in PT cells. In contrast, gentamicin exerts a noncompetitive inhibition of the N-SMase in PT cells. Subcellular fractionation studies revealed that A-SMase was exclusively localized in the "lysosome-rich" fraction, whereas most, if not all, the N-SMase was localized in the microsomal fraction and "plasma-membrane"-rich fraction in cultured PT cells. Cells incubated with gentamicin for 21 days contained 25% lower activity of A-SMase associated with the lysosomal fraction as compared to control. In contrast, N-SMase activity in the microsomal and plasma membrane fraction was one-half as compared to control. We conclude that gentamicin-mediated decrease in sphingomyelinase activity may be responsible for the storage of sphingomyelin in cultured human PT cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Purification to homogeneity of human placental acid sphingomyelinase   总被引:1,自引:0,他引:1  
Acid sphingomyelinase was purified to homogeneity from human placenta in the presence of a dialyzable detergent, n-octyl-beta-D-glucopyranoside. The major steps in the procedure included column chromatographies with Con A-Sepharose, sphingosylphosphorylcholine-Sepharose 4B, hexyl-agarose, and Mono P. The purified enzyme with pI 7.4 had a specific activity of approx 170,000 units/mg protein with a yield of 3.6%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single protein band of Mr 62,000. Gel filtration with a Superose 12 column gave a single peak, and the enzyme in the presence 50 mM n-octyl-beta-D-glucopyranoside was of Mr 123,000, indicating that the native enzyme occurs in a dimeric form. The optimal pH was 5.5 with both sphingomyelin and an artificial substrate, 2-N-hexadecanoylamino-4-nitrophenylphosphorylcholine. The Km values were 55 microM with sphingomyelin and 340 microM with the artificial substrate. The enzyme activity was not affected by Mg2+ (1-5 mM), confirming that the enzyme is acid sphingomyelinase. The enzyme was stable at -80 degrees C for more than 4 months. In addition to the enzyme with pI 7.4, the Mono P chromatofocusing gave two peaks (pI 7.0 and 6.7) possessing the enzymatic activity.  相似文献   

5.
Lecithin-cholesterol acyltransferase was purified from rat plasma and the properties of this enzyme during the purification procedures and those of the purified enzyme were investigated in comparison with the human enzyme. The rat enzyme was not adsorbed on hydroxyapatite, which was employed for the purification of the human enzyme. When purified human enzyme was incubated at 37 degrees C in 0.1 mM phosphate buffer (pH 7.4; ionic strength, 0.00025), no alteration of enzyme activity was observed for up to 6 h. In the case of the rat enzyme, however, approximately 40% of the enzyme activity was lost under the same conditions. The human enzyme and rat enzyme were both retained on a Sepharose 4B column to which HDL3 was covalently linked, in 39 mM phosphate buffer, pH 7.4. Although the human enzyme was eluted from the column in 1 mM phosphate buffer, the rat enzyme was dissociated from the column at a lower buffer concentration (0.1 mM phosphate buffer). These findings indicate that the rat enzyme effectively associated with HDL3 in 39 mM phosphate buffer, pH 7.4, but the association was more sensitive to increase of ionic strength compared with that of the human enzyme.  相似文献   

6.
7.
A hitherto undescribed sphingomyelinase (sph'ase 7.4) of human brain has been studied in crude and partially purified (3- to 4- fold) extracts of grey matter, and compared to the known sphingomyelinase with an acid pH optimum (sph'ase 5.0). Its specificity for sphingomyelin as substrate is similar to that of sph'ase 5.0, but it differs from sph'ase 5.0 in its pH optimum (7.4 vs 5.0) and in a requirement for Mg2+ for optimal activity. Other properties of sph'ase 7.4 that distinguish it from sph'ase 5.0 include (a) its lack of appreciable solubilization during dialysis of crude homogenates (b) a more marked concentrations in grey matter than in white matter (9- to 13- fold vs 1.5- to 2-fold for sph'ase 5.0); (c) inhibition by Ca2+ and Cd2+ ions, and by EDTA; (D) stimulation by dithiothreitol, and inhibition by cysteine, N-ethylmaleimide, and p-hydroxymercuribenzoate; (e) lack of inhibition by nucleotides (AMP.ADP, and ATP) and by NAD plus NADH; and (f) relative instability to storage or manipulation between -20degrees C and 40degrees C. These differences indicate the SPH'ASE 7.4 is a different enzyme protein from sph'ase 5.0. Unlike sph'ase 5.0, which is widely distributed in mammalian tissues, sph'ase 7.4 occurs predominantly in grey matter and little activity was observed is spleen, liver, or leukocytes. The high levels of this enzyme in brain suggest a role related to the specific functions of this organ or to the need for a more stringent control of sphingomyelin catabolism in brain as compared to other organs.  相似文献   

8.
The urea cycle enzyme arginase (EC 3.5.3.1) hydrolyzes l-arginine to l-ornithine and urea. Mammalian arginases require manganese, have a highly alkaline pH optimum and are resistant to reducing agents. The gastric human pathogen, Helicobacter pylori, also has a complete urea cycle and contains the rocF gene encoding arginase (RocF), which is involved in the pathogenesis of H. pylori infection. Its arginase is specifically involved in acid resistance and inhibits host nitric oxide production. The rocF gene was found to confer arginase activity to Escherichia coli; disruption of plasmid-borne rocF abolished arginase activity. A translationally fused His(6)-RocF was purified from E. coli under nondenaturing conditions and had catalytic activity. Remarkably, the purified enzyme had an acidic pH optimum of 6.1. Both purified arginase and arginase-containing H. pylori extracts exhibited optimal catalytic activity with cobalt as a metal cofactor; manganese and nickel were significantly less efficient in catalyzing the hydrolysis of arginine. Viable H. pylori or E. coli containing rocF had significantly more arginase activity when grown with cobalt in the culture medium than when grown with manganese or no divalent metal. His(6)-RocF arginase activity was inhibited by low concentrations of reducing agents. Antibodies raised to purified His(6)-RocF reacted with both H. pylori and E. coli extracts containing arginase, but not with extracts from rocF mutants of H. pylori or E. coli lacking the rocF gene. The results indicate that H. pylori RocF is necessary and sufficient for arginase activity and has unparalleled features among the arginase superfamily, which may reflect the unique gastric ecological niche of this organism.  相似文献   

9.
Sodium nitroprusside (SNP), a NO donor, has been recognized as an inducer of apoptosis in various cell lines. Here, we demonstrated the intracellular formation of ceramide, a lipid signal mediator, in SNP-induced apoptosis in human leukemia HL-60 cells and investigated the mechanisms of ceramide generation. The levels of intracellular ceramide increased to, at most, 160% of the control level in a time- and dose-dependent manner when the cells were treated with 1 mM SNP. SNP also decreased the sphingomyelin level to approximately 70% of the control level and increased magnesium-dependent neutral sphingomyelinase (N-SMase) activity to 160% of the control activity 2 h after treatment. Neither acid SMase nor magnesium-independent N-SMase was affected by SNP. Caspases are thought to be key enzymes in apoptotic cell death. Acetyl-Asp-Glu-Val-Asp-aldehyde, a synthetic tetrapeptide inhibitor of caspases, inhibited magnesiumdependent N-SMase, ceramide generation, and apoptosis. Moreover, recombinant purified caspase-3 increased magnesium-dependent N-SMase in a cell-free system. These results suggest that the findings that SNP increased ceramide generation and magnesium-dependent N-SMase activity via caspase-3 are interesting to future study to determine the relation between caspases and sphingolipid metabolites in NO-mediated signaling.  相似文献   

10.
Purified rat brain microvessels have been shown to hydrolyze radiolabeled sphingomyelin by means of two different enzyme systems. Enzymatic activity was detected at pH 7.4 and was strongly stimulated by magnesium or manganese and inhibited by calcium. Activity at pH 5.1 could also be found and was not dependent on any of these cations. At neutral pH and in the presence of magnesium, the rate of sphingomyelin hydrolysis did not exhibit a linear relationship with protein concentration. In contrast, increasing the protein concentration from 0.05 to 0.5 mg/ml resulted in a constant increase of sphingomyelin hydrolysis at pH 5.1. Kinetic parameters of both neutral and acid activities have been determined and were similar in magnitude to values reported previously for neural sphingomyelinases. This work demonstrates the occurrence of a neutral sphingomyelinase activity in purified rat brain microvessels, an observation raising the question of its role at the level of the blood-brain interface.  相似文献   

11.
Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH–optimum and Mg2+-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2.  相似文献   

12.
Liposomes of [3H]sphingomyelin are readily hydrolyzed by extracts of human spleen, liver, cultured skin fibroblasts and purified placental sphingomyelinase in the absence of detergents. The pH optimum for hydrolysis by liver and spleen extracts was 6.5-7.0 while the fibroblast activity showed an optimum at pH 4.0-4.3. However, the pH optimum for purified placental sphingomyelinase in the presence of Triton X-100 (pH 5.0) is only slightly different from that displayed with liposomes (pH 5.3). The data clearly show that hydrolysis of liposomal sphingomyelin by sphingomyelinase is affected by the composition and purity of the enzyme source.  相似文献   

13.
Alcohol dehydrogenase was purified in 14 h from male Fischer-344 rat livers by differential centrifugation, (NH4)2SO4 precipitation, and chromatography over DEAE-Affi-Gel Blue, Affi-Gel Blue, and AMP-agarose. Following HPLC more than 240-fold purification was obtained. Under denaturing conditions, the enzyme migrated as a single protein band (Mr congruent to 40,000) on 10% sodium dodecyl sulfate-polyacrylamide gels. Under nondenaturing conditions, the protein eluted from an HPLC I-125 column as a symmetrical peak with a constant enzyme specific activity. When examined by analytical isoelectric focusing, two protein and two enzyme activity bands comigrated closely together (broad band) between pH 8.8 and 8.9. The pure enzyme showed pH optima for activity between 8.3 and 8.8 in buffers of 0.5 M Tris-HCl, 50 mM 2-(N-cyclohexylamino)ethanesulfonic acid (CHES), and 50 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), and above pH 9.0 in 50 mM glycyl-glycine. Kinetic studies with the pure enzyme, in 0.5 M Tris-HCl under varying pH conditions, revealed three characteristic ionization constants for activity: 7.4 (pK1); 8.0-8.1 (pK2), and 9.1 (pK3). The latter two probably represent functional groups in the free enzyme; pK1 may represent a functional group in the enzyme-NAD+ complex. Pure enzyme also was used to determine kinetic constants at 37 degrees C in 0.5 M Tris-HCl buffer, pH 7.4 (I = 0.2). The values obtained were Vmax = 2.21 microM/min/mg enzyme, Km for ethanol = 0.156 mM, Km for NAD+ = 0.176 mM, and a dissociation constant for NAD+ = 0.306 mM. These values were used to extrapolate the forward rate of ethanol oxidation by alcohol dehydrogenase in vivo. At pH 7.4 and 10 mM ethanol, the rate was calculated to be 2.4 microM/min/g liver.  相似文献   

14.
Constitutive expression of gamma-glutamyltranspeptidase (GGT) activity is common to all Helicobacter pylori strains, and is used as a marker for identifying H. pylori isolates. Helicobacter pylori GGT was purified from sonicated extracts of H. pylori strain 85P by anion exchange chromatography. The N-terminal amino acid sequences of two of the generated endo-proteolysed peptides were determined, allowing the cloning and sequencing of the corresponding gene from a genomic H. pylori library. The H. pylori ggt gene consists of a 1681 basepair (bp) open reading frame encoding a protein with a signal sequence and a calculated molecular mass of 61 kDa. Escherichia coli clones harbouring the H. pylori ggt gene exhibited GGT activity at 37 degrees C, in contrast to E. coli host cells (MC1061, HB101), which were GGT negative at 37 degrees C. GGT activity was found to be constitutively expressed by similar genes in Helicobacter felis, Helicobacter canis, Helicobacter bilis, Helicobacter hepaticus and Helicobacter mustelae. Western immunoblots using rabbit antibodies raised against a His-tagged-GGT recombinant protein demonstrated that H. pylori GGT is synthesized in both H. pylori and E. coli as a pro-GGT that is processed into a large and a small subunit. Deletion of a 700 bp fragment within the GGT-encoding gene of a mouse-adapted H. pylori strain (SS1) resulted in mutants that were GGT negative yet grew normally in vitro. These mutants, however, were unable to colonize the gastric mucosa of mice when orally administered alone or together (co-infection) with the parental strain. These results demonstrate that H. pylori GGT activity has an essential role for the establishment of the infection in the mouse model, demonstrating for the first time a physiological role for a bacterial GGT enzyme.  相似文献   

15.
A colored derivative of sphingomyelin was synthesized and used as substrate for several sphingomyelinases. The compound is N-omega-trinitrophenyl-aminolaurylsphingosylphosphorylcholine. The rate of hydrolysis of this substrate was compared to that of bovine brain sphingomyelin, labelled with tritium in the choline moiety. The following enzyme preparations were used: homogenate-less debris of brain, assayed at pH 5.0 or 7.4; a solubilized preparation derived from rat brain lysosomes, assayed at pH 5.0 and a purified enzyme of Staphylococcus aureus. With all preparations, the rates of hydrolysis of the yellow derivative were very similar to those of the brain sphingomyelin. Extracts of skin fibroblasts of normal and Niemann-Pick patients as well as amniotic cells were also used. Again, the rates of hydrolysis of the yellow derivative practically equalled those using brain sphingomyelin.  相似文献   

16.
Ceramide and other sphingolipids are now recognized as novel intracellular signal mediators. One of the important and regulated steps in the metabolism of sphingolipids is the hydrolysis of sphingomyelin into ceramide by sphingomyelinases. Whereas some studies suggest a role for acid sphingomyelinase in cell regulation, several lines of investigation suggest that neutral sphingomyelinase (N-SMase) plays a critical role in stress responses including apoptosis. Recently the advanced purification of neutral membrane-bound magnesium-dependent sphingomyelinase from rat brain was reported on. The specific activity of the purified N-SMase was increased by approximately 3000-fold over the rat brain homogenate, and it is specifically activated by phosphatidylserine. In cells, N-SMase may be coupled to either the redox state and/or glutathione metabolism. The significance of N-SMase and ceramide in stress responses is discussed.  相似文献   

17.
An enzyme which requires divalent metals and hydrolyses sphingomyelin to ceramide and phosphorylcholine is present in rat and human brain and practically absent from other organs. The greatest activity is associated with the microsomal fraction. It had an optimal pH at about 7.4, required magnesium or manganese ions and was completely inhibited by EDTA. Triton X-100 was required for optimal activity and this detergent could also be used to partly solubilize the enzyme from rat brain microsomes. Lecithin was hydrolyzed at only 2% of the corresponding rate of hydrolysis of sphingomyelin.  相似文献   

18.
Human placental acid sphingomyelinase was highly purified in the presence of Triton X-100. DEAE-Sephacel chromatography and chromatofocusing were the most effective steps in the purification procedure. Enzyme purification was 380,000 nmol/mg protein/h. Characterization and radioiodination were carried out with the chromatofocusing fraction containing highly purified enzyme. The purified enzyme contained no activity of eleven other lysosomal hydrolases but hydrolyzed bis-p-nitrophenyl phosphate slowly compared with [14C]sphingomyelin and chromogenic substrates. SDS-gel electrophoresis revealed two distinct protein bands with molecular weights of 70,500 and 39,800. This enzyme had a molecular weight of 200,000 as determined by analytical gel filtration. The pH optimum was 5.0 and Km was 52.6 x 10(-5) M for [14C]sphingomyelin. Highly purified sphingomyelinase was labeled with 125iodine by the use of Enzymobeads. Labeled sphingomyelinase preparation was rapidly cleared from blood with t1/2 of 1 min. It was absorbed mostly into the liver and presumably largely excreted from there. This labeled enzyme may be useful in metabolic studies in normal animals and animal models of genetic lysosomal storage disorders.  相似文献   

19.
Acid Sphingomyelinase of Human Brain: Purification to Homogeneity   总被引:2,自引:2,他引:0  
Abstract: Acid sphingomyelinase (sphingomyelin phosphodiesterase, EC 3.1.4.12) was purified from human brain by extraction with 0.1% Triton X-100, followed by sequential chromatography on Concanavalin A-Sepharose, octyl-Sepharose, hydroxylapatite, DEAE-cellulose, red A-agarose, Sephadex G-200, and DEAE-cellulose with ampholyte elution. Sphingomyelinase activity was purified more than 20,000-fold from the starting homogenate with a 1% yield. Specific activity of up to 800 μmol/h/mg protein could be achieved. Gel electrophoresis with 6% polyacrylamide containing sodium dodecyl sulfate gave a single protein band with a molecular weight of 70,000, in good agreement with the molecular weight previously estimated from sucrose density gradient centrifugation in 0.1% Triton X-100. Triton X-100 could be readily removed from the enzyme by sucrose density gradient centrifugation. The Triton-free enzyme showed the same K m and pH optimum. Heat stability of the enzyme was reversibly affected by Triton X-100, in that removal of the detergent made the enzyme more heat labile. The K m of purified enzyme for sphingomyelin was 36 μ M . It was unaffected by sulfhydryl reagents, but was inhibited by dithiothreitol at high concentrations. The preparation was free of all lysosomal hydrolase activities tested, including galactosylceramidase and α-mannosidase, which tended to copurify in our previous procedure. The enzyme was inactive toward sphingosylphosphorylcholine. It was active with bis[ p -nitrophenyll- and bis[4-methylumbelliferyl]phosphate and the chromogenic and fluorogenic sphingomyelin analogues.  相似文献   

20.
The alpha-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25 degrees C are kcat=2.4x10(5) s(-1), KM=17 mM and kcat/KM=1.4x10(7) M(-1) x s(-1). The pH dependence of kcat/KM fits with a simple titration curve with pK(a)=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, k(enz), of 24 M(-1) x s(-1) at pH 8.8 and 25 degrees C. However, with 2-nitrophenyl acetate as substrate a k(enz) value of 665 M(-1) x s(-1) was obtained under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号