首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Journal of Ichthyology - The review considers probable ways to overcome the deficiency of eicosapentaenoic and docosahexaenoic acids in the human diet through the rational development of...  相似文献   

2.
3.
Dietary fish must be assessed for benefits and risks to formulate risk management strategies. This article demonstrates that Laurentian Great Lakes (GL) freshwater species are good sources of omega-3 fatty acids using new data from a small sample (n = 7) of Lake Superior siscowet lake trout (Salvelinus namaycush siscowet) and five other GL fish species’ data. For Lake Superior (LS) siscowets, the saturates, mono-unsaturates, and poly-unsaturates composed 20.1, 40.7, and 39.1% of total lipid weight, respectively. Omega-3 poly-unsaturates (PUFAs) in these fish were more than twice the omega-6 (omega 3/6 ratio = 2.4). The LS lake trout data were combined with earlier LS data collected during the 1980s for eight other species and from five species of Lake Erie fish. All the GL freshwater species were compared with seven other published marine and freshwater fish studies from other global regions. PUFAs were compared based on latitude and marine versus freshwater origin. Differences between marine and freshwater species in omega-3 fatty acid were less at higher latitudes. GL freshwater fish species can be a good source of beneficial fats like marine fish and must be accounted in effective risk communications involving persistent bioaccumulative toxicants in dietary fish.  相似文献   

4.
The flow of long-chain polyunsaturated fatty acids (PUFAs) of the omega-3 family, namely, eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), exported by amphibian metamorphs from water to terrestrial ecosystems in the Medveditsa River floodplain, was quantified for the first time. The total biomass export by three amphibian species (Pelobates fuscus, Bombina bombina, and Pelophylax ridibundus) per unit area of the lake surface was 0.594 g/m2 per year (as a mean for 2 years). The biomass flow per unit area of land was 0.726 g/ha per year (0.302 g/ha per year for organic carbon) in 2015–2016. The average annual total removal of EPA + DHA by amphibians from the floodplain lake was 1.47 mg/m2 of water surface area. Due to the high content of EPA and DHA in biomass, amphibians are potentially a valuable food for terrestrial predators having no access to other sources of essential PUFAs.  相似文献   

5.

Objectives

To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats.

Methods

Female Sprague-Dawley rats (n = 3 each group) were treated with or without an n-3 PUFAs (fish oil) enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7) were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control). The 5-bromodeoxyuridine (Brdu) was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG) progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9), respectively.

Results

Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure.

Conclusion

Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working memory and short-term memory of rats at their adulthood, which may through inducing neuronal apoptosis and decreasing neurogenesis. However, these sevoflurane-induced unfavorable neuronal effects can be mitigated by perinatal n-3 PUFAs supplementation.  相似文献   

6.
Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation. Here we aim to determine whether ω-3 PUFAs antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. Treatment of ω-3 PUFAs suppresses lipopolysaccharide (LPS)-induced cytokine expression in macrophages. Luciferase reporter assays, electrophoretic mobility shift assays (EMSA) and Chromatin immunoprecipitation (ChIP) assays show that treatment of macrophages with ω-3 PUFAs significantly inhibits LPS-induced NF-κB signaling. Interestingly, DHA also increases expression, phosphorylation and activity of the major isoform α1AMPK, which further leads to SIRT1 over-expression. More importantly, DHA mimics the effect of SIRT1 on deacetylation of the NF-κB subunit p65, and the ability of DHA to deacetylate p65 and inhibit its signaling and downstream cytokine expression require SIRT1. In conclusion, ω-3 PUFAs negatively regulate macrophage inflammation by deacetylating NF-κB, which acts through activation of AMPK/SIRT1 pathway. Our study defines AMPK/SIRT1 as a novel cellular mediator for the anti-inflammatory effects of ω-3 PUFAs.  相似文献   

7.
Algal polyunsaturated fatty acids (PUFAs) are known to be high‐energy, often‐essential resources to freshwater aquatic food webs. On the other hand, high PUFA cell content in some algal taxa has been linked with the production of derivatives that may act as pheromones, allelogens or toxins. It has been known for some time that these compounds function in marine chemical ecology, but recent evidence indicates that they may play similar roles in freshwater ecosystems. This paper presents field and laboratory studies of planktonic and periphytic communities from freshwater systems, and shows that these communities are rich sources of certain PUFAs and derivatives which may function in both positive and negative foodweb interactions. This also has important implications for surface water quality, as these compounds are potent sources of rancid fishy odours.  相似文献   

8.
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 ) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.  相似文献   

9.
BackgroundCirculating polyunsaturated fatty acid (PUFA) levels are associated with clinical outcomes in cardiovascular diseases including coronary artery disease and chronic heart failure (HF). However, their clinical implications in acute decompensated HF (ADHF) remain unclear. The aim of this study was to investigate the clinical roles of circulating PUFAs in patients with ADHF.MethodsCirculating levels of PUFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), arachidonic acid (AA) and dihomo-gamma linoleic acid (DGLA), were measured on admission in 685 consecutive ADHF patients. Adverse events were defined as all-cause death and worsening HF.ResultsDuring a median follow-up period of 560 days, 262 (38.2%) patients had adverse events. Although patients with adverse events had lower n-6 PUFA (AA + DGLA) level than those without, n-3 PUFA (EPA + DHA) level was comparable between the groups. Kaplan-Meier analyses showed that lower n-6 PUFA level on admission was significantly associated with the composite of all-cause death and worsening HF, all-cause death, cardiovascular death and worsening HF (p < 0.001, p = 0.005, p = 0.021, p = 0.019, respectively). In a multivariate Cox model, lower n-6 PUFA level was independently associated with increased risk of adverse events (HR 0.996, 95% CI: 0.993–0.999, p = 0.027).ConclusionsLower n-6 but not n-3 PUFA level on admission was significantly related to worse clinical outcomes in ADHF patients. Measurement of circulating n-6 PUFA levels on admission might provide information for identifying high risk ADHF patients.  相似文献   

10.
The polar lipids and fatty acids of the microalgae Pavlova lutheriwere analyzed. The principal polar lipid components were monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), 1,2-diacylglyceryl-O-2'-hydroxymethyl-(N,N,N-trimethyl)-rß-alanine(DGTA) and 1,2-diacylglyceryl-3-O-carboxyhydroxymethylcholine(DGCC). Each polar lipid had a different set of combinationsof fatty acids, the most characteristic feature being the localizationof polyunsaturated fatty acids in the betaine lipids. The percentagesof polyunsaturated fatty acids in DGTA and DGCC were 70% and50%, respectively, and these fatty acids were localized at theC-2 position in the betaine lipids. An analysis of the incorporationof 14C-labelled compounds into the algal cells indicated theinvolvement of DGCC in acyl exchange. (Received October 17, 1994; Accepted October 2, 1995)  相似文献   

11.
There is a growing number of animal models and clinical trials of n-3 polyunsaturated fatty acid (PUFAs) supplementation in disease. Epidemiologic and biochemical studies have suggested beneficial effects of n-3 PUFAs. But also, the use of n-3 PUFAs has some potential toxicological risks that can be circumvented by careless processing, storing, and preserving the PUFAs. The use of n-3 PUFAs is safe if appropriate preparations and dosages are selected. Much research is needed to clarify their use under different disease conditions. The newly established clinical and nutritional facts on n-3 PUFAs will induce industry to develop food products based on this knowledge.  相似文献   

12.
13.
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.  相似文献   

14.
15.
目的:研究终极腐霉的脂肪酸成分及其代谢途径。方法:用气相色谱-质谱仪对终极腐霉的脂肪酸进行分析,阐述其代谢途径和菌体生理特性。结果:共有15种不饱和脂肪酸,占总脂肪酸的68.87%,其中EPA含量为8.15%。结论:终极腐霉具有高产EPA的商业应用前景,△6,△12,△15脂肪酸脱氢酶是阻碍EPA高产的关键所在。  相似文献   

16.
To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.  相似文献   

17.
Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio) in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011), with smaller wings (p < 0.05) and a higher frequency of wing deformities (R = 0.988; p = 0.001). We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable.  相似文献   

18.
The lipid and fatty acid compositions in nine obligate and facultative barophilic bacteria isolated from the intestinal contents of seven deep-sea fish were determined. Phospholipid compositions were simple, with phosphatidylethanolamine and phosphatidylglycerol predominating in all strains. Docosahexaenoic acid (DHA; 22:6n-3), which has not been reported in procaryotes except for deep-sea bacteria, was found to be present in eight strains at a level of 8.1 to 21.5% of total fatty acids. In the other strain, eicosapentaenoic acid (EPA; 20:5n-3) was present at a level of 31.5% of total fatty acids. Other fatty acids observed in all strains were typical of marine gram-negative bacteria. Subcultures from pouches prepared from intestinal contents of five deep-sea fish by the most-probable-number (MPN) method were analyzed for fatty acids, and all subcultures contained DHA and/or EPA. Accordingly, viable cell counts of bacteria containing DHA and EPA were estimated at a maximum of 1.3 x 10(sup8) and 2.4 x 10(sup8) cells per ml, respectively, and accounted for 14 and 30%, respectively, of the total cell counts in the intestinal contents of the deep-sea fish. In the case of 10 shallow-sea poikilothermic animals having bacterial populations of 1.1 x 10(sup6) to 1.9 x 10(sup9) CFU per ml in intestinal contents, no DHA was found in the 112 isolates examined, while production of EPA was found in 40 isolates from cold- and temperate-sea samples. These results suggest that DHA and EPA are involved in some adaptations of bacteria to low temperature and high pressure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号