共查询到20条相似文献,搜索用时 0 毫秒
1.
Light plays a pivotal role in animal orientation. Aquatic animals face the problem that penetration of light in water is restricted through high attenuation which limits the use of visual cues. In pure water, blue and green light penetrates considerably deeper than red and infrared spectral components. Submicroscopic particles and coloured dissolved organic matter, however, may cause increased scattering and absorption of short-wave components of the solar spectrum, resulting in a relative increase of red and infrared illumination. Here we investigated the potential of near-infrared (NIR) light as a cue for swimming orientation of the African cichlid fish (Cichlidae) Oreochromis mossambicus. A high-throughput semi-automated video tracking assay was used to analyse innate behavioural NIR-sensitivity. Fish revealed a strong preference to swim in the direction of NIR light of a spectral range of 850-950nm at an irradiance similar to values typical of natural surface waters. Our study demonstrates the ability of teleost fish to sense NIR and use it for phototactic swimming orientation. 相似文献
2.
Teles MC Sîrbulescu RF Wellbrock UM Oliveira RF Zupanc GK 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2012,198(6):427-449
Although the generation of new neurons in the adult nervous system ('adult neurogenesis') has been studied intensively in recent years, little is known about this phenomenon in non-mammalian vertebrates. Here, we examined the generation, migration, and differentiation of new neurons and glial cells in the Mozambique tilapia (Oreochromis mossambicus), a representative of one of the largest vertebrate taxonomic orders, the perciform fish. The vast majority of new cells in the brain are born in specific proliferation zones of the olfactory bulb; the dorsal and ventral telencephalon; the periventricular nucleus of the posterior tuberculum, optic tectum, and nucleus recessi lateralis of the diencephalon; and the valvula cerebelli, corpus cerebelli, and lobus caudalis of the cerebellum. As shown in the olfactory bulb and the lateral part of the valvula cerebelli, some of the young cells migrate from their site of origin to specific target areas. Labeling of mitotic cells with the thymidine analog 5-bromo-2'-deoxyuridine, combined with immunostaining against the neuron-specific marker protein Hu or against the astroglial marker glial fibrillary acidic protein demonstrated differentiation of the adult-born cells into both neurons and glia. Taken together, the present investigation supports the hypothesis that adult neurogenesis is an evolutionarily conserved vertebrate trait. 相似文献
3.
《Journal of trace elements in medicine and biology》2014,28(3):284-292
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity. 相似文献
4.
Nikaido Y Ueda S Takemura A 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2009,152(1):77-82
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland. 相似文献
5.
Sodium and calcium balance in Mozambique tilapia, Oreochromis mossambicus, raised at different salinities 总被引:1,自引:0,他引:1
Vonck AP Wendelaar Bonga SE Flik G 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》1998,119(2):441-449
Mozambique tilapia, Oreochromis mossambicus, born and raised in five salinities, viz. (relatively soft) fresh water, 25, 50, 75% and full-strength sea-water, were analyzed for ionoregulatory performance (in particular sodium and calcium handling) and growth. This tilapia regulates its blood serum mineral composition rather effectively; however, in sea-water serum concentrations of sodium, chloride and calcium (in males only) were increased, as was the serum osmolarity. In sea-water, the total body sodium pool was significantly enlarged. With increasing salinity, sodium turnover increased. Serum calcium levels and the total body calcium pool were more strictly controlled than those of sodium. The lowest density of chloride cells in opercular epithelium and the lowest branchial Na+-K+-ATPase activity were observed in 50% sea-water; these values were higher in fish kept in waters of lower or higher salinities. Fish grew more rapidly in brackish water. Fish kept in brackish water appeared to depend on food-related calcium for growth as branchial calcium uptake provides no more than 20% of growth related Ca-accumulation. 相似文献
6.
The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-). 相似文献
7.
D. Kültz K. Jürss 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1993,163(5):406-412
Mitochondria-rich cells have been separated from other epithelial cells of tilapia (Oreochromis mossambicus) gills by density gradient centrifugation on Percoll. During centrifugation two main bands of cells formed. The viability of the cells in both bands was high (>90%). In one band, 45–47% of the total cell number was mitochondria-rich cells. The other band contained at least 80% pavement cells, representing the majority of other gill epithelial cell types. A comparison of the activities of four enzymes involved in major metabolic and ion regulatory functions was made between these two different fractions of cells. Furthermore, the separation of gill epithelial cells and determination of enzymatic activity was carried out in tilapia after the fish were acclimated to fresh water or hyperhaline sea water (60 mg·ml-1 S) to gain an indication of the relative contribution of mitochondria-rich cells and pavement cells to both NaCl excretion and absorption. Regardless of acclimation salinity, the activities of Na+/K+-ATPase, glutamate dehydrogenase and glucose-6-phosphate dehydrogenase were significantly higher in mitochondria-rich cells than in pavement cells. However, tilapia acclimated to hyperhaline sea water possessed significantly lower carbonic anhydrase activity in mitochondria-rich cells than in pavement cells. In contrast, no significant difference of carbonic anhydrase activity was observed between the two cell fractions in tilapia acclimated to fresh water.Abbreviations ATPase adenosine triphosphatase - CA carbonic anhydrase - DASPMI dimethylaminostyrylmethylpyridinium iodine - FW fresh-water - GIDH glutamate dehydrogenase - G6PDH glucose-6-phosphate dehydrogenase - HSW hyperhaline sea water (60 mg·ml-1) - MR cells, mitochondria-rich cells - S salinity 相似文献
8.
Sardella BA Brauner CJ 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2008,148(4):430-436
California Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) are extremely saline tolerant and have been previously shown to reduce whole-animal oxygen consumption rate (MO(2)) upon exposures to salinities greater than that of seawater (SW). In this study tilapia were acclimated to 15, 30, 45, 60 and 75 g/L salinity for 1, 5, 14, or 28 days. There was little change in plasma osmolality or muscle water content in salinities below 60 g/L, and branchial Na(+), K(+)-ATPase (NKA) activity was low in 15 and 30 g/L relative to 60 and 75 g/L. When tilapia were exposed to 75 g/L, plasma osmolality and NKA activity were significantly increased within 5 days of exposure relative to those in 15 and 30 g/L, and remained elevated over the entire 28 days acclimation, indicating that short term salinity challenges (i.e., 5 days) are predictive of longer exposure durations in this species. MO(2) following transfer to 15 and 30 g/L was elevated, reflecting the high energy demand required for switching from a hyper- to a hypo-osmoregulatory strategy. The MO(2) of 60 g/L-exposed fish was significantly reduced at 1, 5, and 14 days, relative to 30 g/L-exposed fish; however by 28 days there were no significant differences. We investigated the potential for a metabolic basis for the salinity-induced MO(2) reduction, using forward stepwise linear regression to correlate enzyme activities of brain, liver, and kidney with MO(2). Brain NKA was correlated with MO(2) after 5 days (p<0.01, r(2)=0.944) and both brain NKA and hepatic total ATPase were correlated with the reduced MO(2) at 14 days (p=0.027, r(2)=0.980 and p=0.025, r(2)=0.780, respectively). These results may indicate a tissue-level metabolic suppression, which has not been previously described as a response to hypersaline exposure in fishes. 相似文献
9.
10.
《African Journal of Aquatic Science》2013,38(1):119-124
Copper (Cu) is one of the most commonly reported metal pollutants in African water bodies, but there are few studies on African freshwater fish species of copper accumulation and copper toxicity. Adult O. mossambicus were exposed to 0mg l?1 (control) and 0.75mg l?1 Cu for 96h and 0 (control), 0.11, 0.29 and 0.47mg l?1 copper for 64 days. Samples of liver and gills were collected after 96h, and after 1, 32 and 64 days, respectively. There were significant differences in the mean Cu accumulation values in the liver and gills between the control and the Cu-exposed fish after the 96-h exposure. In fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days there was an increase in copper level in the tissues. In fish exposed to 0.47mg l?1 Cu the concentration in the gill and liver tissue did not increase between Day 1 and Day 32. At this time, Cu accumulation in the liver was higher than for fish exposed to 0.11 and 0.29mg l?1 Cu for 64 days. Exposure to approximately 0.47mg l?1 Cu for more than 32 days induced mortality. 相似文献
11.
Fiess JC Kunkel-Patterson A Mathias L Riley LG Yancey PH Hirano T Grau EG 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,146(2):252-264
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia. 相似文献
12.
Inokuchi M Kaneko T 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2012,162(3):245-251
Cellular recruitment and degeneration of branchial mitochondrion-rich (MR) cells were examined in Mozambique tilapia transferred from hypoosmotic to hyperosmotic water. To examine apoptosis in the gills associated with salinity change, tilapia were directly transferred from freshwater to 70% seawater. The TUNEL assay showed that apoptotic cells in the gills were significantly increased at 1 day after transfer, which was supported by an electron-microscopic observation that gill MR cells underwent morphological changes characteristic of apoptosis such as an irregularly shaped electron-dense nucleus and distension of the tubular system. To further examine MR-cell recruitment, freshwater-acclimated tilapia were transferred either to freshwater or to 70% seawater after BrdU injection. Immunohistochemical detection of BrdU-labeled nuclei and Na(+)/K(+)-ATPase-rich MR cells allowed us to classify BrdU-labeled MR cells into two subtypes: a single MR cell and an MR-cell complex. Although newly generated single MR cells were observed similarly in both freshwater and 70% seawater-transferred fish, the density of MR-cell complexes was much higher in 70% seawater than in freshwater. Our findings indicated that transfer from hypoosmotic to hyperosmotic water enhanced apoptosis of freshwater-type MR cells, resulting in reduction in hyperosmoregulatory ability for freshwater adaptation, and stimulated the recruitment of MR-cell complexes to develop hypoosmoregulatory ability for seawater adaptation. 相似文献
13.
Sparks RT Shepherd BS Ron B Harold Richman N Riley LG Iwama GK Hirano T Gordon Grau E 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2003,136(4):657-665
Effects of environmental salinity and 17α-methyltestosterone (MT) on growth and oxygen consumption were examined in the tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to one of four groups: FW, MT treatment in FW, seawater (SW) and MT treatment in SW. All treatment groups were fed to satiation three times daily. The fish reared in SW (both control and MT-treated groups) grew significantly larger than either group in FW from day 43 throughout the experiment (195 days). The fish fed with MT added to their feed grew significantly larger than their respective controls from day 85 in FW and in SW until the end of the experiment. The routine metabolic rate (RMR) was determined monthly from month 2 (day 62) to month 5 (day 155). A significant negative correlation was seen between RMR and body mass in all treatment groups. Among fish of the same age, the SW-reared tilapia had significantly lower RMRs than the FW-reared fish. The MT-treated fish in SW showed significantly lower RMRs than the SW control group at months 3–5, whereas MT treatment in FW significantly increased the RMR at month 3. Comparison of regression lines between RMR and body mass indicates that MT treatment in FW caused a significant increase in oxygen consumption at a given mass of the fish, whereas MT treatment was without effect on RMR in SW-reared fish. These results clearly indicate that SW-rearing and MT treatment accelerate growth of tilapia, and that RMR decreases as fish size increased. It is also likely that the increased RMR and growth in MT-treated tilapia in FW may be due to the metabolic actions of MT, although the reason for the absence of MT treatment in SW is unclear. 相似文献
14.
Similar to those of the gills of adults, three types of mitochondria-rich (MR) cells with different morphologies of apical surfaces (wavy convex, shallow basin, and deep hole) were identified on the integument of freshwater-acclimated tilapia larvae (Oreochromis mossambicus). The object of this study is to test the hypothesis that these subtype cells may represent MR cells equipped with variable efficiencies in Cl(-) uptake. Larvae acclimated to low-Cl(-) =0.001-0.007 mM) water developed higher densities of MR cells than those acclimated to high-Cl(-) =7.3-7.9 mM) water. The percentage of wavy-convex-type cells in total MR cells was higher in low-Cl(-)-acclimated larvae than in high-Cl(-)-acclimated larvae, which displayed only deep-hole type. In addition, Cl(-) influx rates of whole larva measured with (36)Cl(-) showed a coincident correlation with MR cell densities, that is, low-Cl(-) larvae displayed higher Cl(-) influx rates than did high-Cl(-) larva, suggesting that tilapia larvae develop a higher density of MR cells with larger apical surfaces (wavy-convex type) to boost Cl(-) uptake in Cl(-)-deficient water. The distinct types of apical surfaces may represent different phases of MR cells that possess different efficiencies of Cl(-) uptake. Increased apical membrane surface areas of MR cells may provide larvae with rapid regulation of Cl(-) before new MR cells differentiate. 相似文献
15.
Euryhaline tilapia larvae are capable of adapting to environmental salinity changes even when transferred from freshwater (FW) to seawater (SW) or vice versa. In this study, the water balance of developing tilapia larvae (Oreochromis mossambicus) adapted to FW or SW was compared, and the short-term regulation of drinking rate of the larvae during salinity adaptation was also examined. Following development, wet weight and water content of both SW- and FW-adapted larvae increased gradually, while the dry weight of both group larvae showed a slow but significant decline. On the other hand, the drinking rate of SW-adapted larvae was four- to ninefold higher than that of FW-adapted larvae from day 2 to day 5 after hatching. During acute salinity challenges, tilapia larvae reacted profoundly in drinking rate, that is, increased or decreased drinking rate within several hours while facing hypertonic or hypotonic challenges, to maintain their constancy of body fluid. This rapid regulation in water balance upon salinity challenges may be critical for the development and survival of developing larvae. 相似文献
16.
Hwang PP Lee TH Weng CF Fang MJ Cho GY 《Physiological and biochemical zoology : PBZ》1999,72(2):138-144
The purpose of this study is to provide biochemical evidence for the functions of the mitochondria-rich cell (MR cell) in the yolk-sac epithelium of the developing larvae of tilapia Oreochromis mossambicus. Western blotting with the antibody (6F) raised against avian Na-K-ATPase alpha1 subunit demonstrated the presence of Na-K-ATPase in yolk-sac epithelium of tilapia larvae and about 1. 46-fold more of the enzyme in seawater larvae than in freshwater ones. The yolk-sac MR cells were immunoreacted to the antibody (alpha5) against the alpha subunit of avian Na-K-ATPase and were double-labeled with anthroylouabain and dimethylaminostyrylethyl-pyridiniumiodine, suggesting the existence and activity of Na-K-ATPase in these cells. Binding of 3H-ouabain in the yolk sac of seawater larvae was much higher than in that of freshwater larvae (4.183+/-0.143 pmol/mg protein versus 1.610+/-0. 060 pmol/mg protein or 0.0508+/-0.0053 pmol/yolk sac versus 0. 0188+/-0.0073 pmol/yolk sac). These biochemical results are further evidence that yolk-sac MR cells are responsible for a major role in the osmoregulatory mechanism of early developmental stages before the function of gills is fully developed. 相似文献
17.
Summary Postovulatory follicles of the tilapia, Oreochromis mossambicus, were examined with electron microscopy and enzyme histochemistry for evidence of steroid-hormone production. Light microscopy was also used to examine changes in the ovary with time after spawning. Electron microscopy detected the presence of smooth endoplasmic reticulum, lipid droplets, and mitochondria with tubular cristae in certain cells of the theca interna. These structures are suggestive of cells that synthesize steroid hormones. Granulosa cells also contained some smooth endoplasmic reticulum, along with an augmentation of Golgi complexes, vesicles, microvilli, and microfilaments within 5–7 days after spawning. Enzyme histochemistry demonstrated an intense reaction of 5, 3-hydroxysteroid dehydrogenase (3-HSD) in variably placed thecal cells up to 7 days after spawning. At this time, the thecal cells of vitellogenic oocyte follicles also began to show strong 3-HSD activity. During the first 7 days after spawning, there was an increase in young primary oocytes and recruitment of some of these to vitellogenic oocytes. By 10 days after spawning, certain thecal cells in the follicles of these vitellogenic oocytes showed an intense 3-HSD reaction, while the postovulatory follicular tissue demonstrated a weak reaction. This arrangement continued for the lifespan of the postovulatory follicular tissue. Postovulatory follicles had a lifespan of up to 25 days after spawning in females that continued to hold the developing fry inside their mouths, i.e., mouthbrooders. At 25 days after spawning, the postovulatory follicular tissue showed signs of degeneration with the presence of vacuoles and lysosomes. In females that ate the zygotes, therefore exhibiting no parental behavior, the postovulatory follicular tissue showed signs of degeneration at l0days after spawning. In these females, the next clutch of eggs also developed at a higher rate than in mouthbrooders. 相似文献
18.
The dorsal fin of the larval and juvenile Oreochromis mossambicus exhibits a unique black spot known as the ' Tilapia mark'. We traced its development and found that it occupied a specific position in the dorsal fin bounded by rays 15 and 20. Ablation experiments carried out on the larval dorsal fin showed that this spot region constituted a developmental positional field. This positional field in the fin could regenerate and re-establish the spot pattern despite repeated perturbation. The re-establishment of spot was not simply due to fin injury since ablation of the non-spotted region of the dorsal and the tail fin did not result in aggregation of melanophores. We propose that that' Tilapia mark' is a result of positional information in operation. 相似文献
19.
Ryohei Yanagie Kyung Mi Lee Soichi Watanabe Toyoji Kaneko 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2009,154(2):263-269
We investigated a change in tissue fluid osmolality and developmental sequences of mitochondria-rich (MR) cells during embryonic and larval stages of Mozambique tilapia, Oreochromis mossambicus, developing in freshwater. Tissue osmolality, representing body fluid osmolality, ranged from 300 to 370 mOsm/kg during embryonic and larval stages. This suggests that tilapia embryos and larvae are also able to regulate body fluid osmolality to some extent, although the levels are somewhat higher and fluctuate more greatly in embryos and larvae than in adults. Na+/K+-ATPase-immunoreactive MR cells were first detected in the yolk-sac membrane 3 days before hatching (day − 3), followed by their appearance in the body skin on day − 2. Subsequently, MR cells in both the yolk-sac membrane and body skin increased in number, and most densely observed on days − 1 and 0. Whereas yolk-sac and skin MR cells decreased after hatching, MR cells in turn started developing in the gills after hatching. Thus, the principal site for MR cell distribution shifted from the yolk-sac membrane and body skin during embryonic stages to the gills during larval stages, and tilapia could maintain continuously their ion balance through those MR cells during early life stages. 相似文献
20.
Effects of exogenous cortisol on drinking rate and water content in developing larvae of tilapia (Oreochromis mossambicus) were examined. Both freshwater- and seawater-adapted larvae showed increases in drinking rates with development. Drinking rates of seawater-adapted larvae were about four- to ninefold higher than those of freshwater-adapted larvae from day 2 to day 5 after hatching. Seawater-adapted larvae showed declines in drinking rate and water content at 4 and 14 h, respectively, after immersion in 10 mg L(-1) cortisol. In the case of freshwater-adapted larvae, the drinking rate decreased after 8 h of cortisol immersion, while the water content did not show a significant change even after 32 h of cortisol immersion. In a subsequent experiment of transfer from freshwater to 20 ppt (parts per thousand, salinity) seawater, immersion in 10 mg L(-1) cortisol for 8-24 h enhanced the drinking rate in larvae at 4 h after transfer, but no significant difference was found in water contents between cortisol-treated and control groups following transfer. These results suggest that cortisol is involved in the regulation of drinking activity in developing tilapia larvae. 相似文献