首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Creatine kinase (CK) catalyzes the reversible phosphorylation of the guanidine substrate, creatine, by MgATP. Although several X-ray crystal structures of various isoforms of creatine kinase have been published, the detailed catalytic mechanism remains unresolved. A crystal structure of the CK homologue, arginine kinase (AK), complexed with the transition-state analogue (arginine-nitrate-ADP), has revealed two carboxylate amino acid residues (Glu225 and Glu314) within 2.8 A of the proposed transphosphorylation site. These two residues are the putative catalytic groups that may promote nucleophilic attack by the guanidine amino group on the gamma-phosphate of ATP. From primary sequence alignments of arginine kinases and creatine kinases, we have identified two homologous creatine kinase acidic amino acid residues (Glu232 and Asp326), and these were targeted for examination of their potential roles in the CK mechanism. Using site-directed mutagenesis, we have made several substitutions at these two positions. The results indicate that of these two residues the Glu232 is the likely catalytic residue while Asp326 likely performs a role in properly aligning substrates for catalysis.  相似文献   

2.
Muscle contraction results in phosphorylation and activation of the AMP-activated protein kinase (AMPK) by an AMPK kinase (AMPKK). LKB1/STRAD/MO25 (LKB1) is the major AMPKK in skeletal muscle; however, the activity of LKB1 is not increased by muscle contraction. This finding suggests that phosphorylation of AMPK by LKB1 is regulated by allosteric mechanisms. Creatine phosphate is depleted during skeletal muscle contraction to replenish ATP. Thus the concentration of creatine phosphate is an indicator of cellular energy status. A previous report found that creatine phosphate inhibits AMPK activity. The purpose of this study was to determine whether creatine phosphate would inhibit 1) phosphorylation of AMPK by LKB1 and 2) AMPK activity after phosphorylation by LKB1. We found that creatine phosphate did not inhibit phosphorylation of either recombinant or purified rat liver AMPK by LKB1. We also found that creatine phosphate did not inhibit 1) active recombinant alpha1beta1gamma1 or alpha2beta2gamma2 AMPK, 2) AMPK immunoprecipitated from rat liver extracts by either the alpha1 or alpha2 subunit, or 3) AMPK chromatographically purified from rat liver. Inhibition of skeletal muscle AMPK by creatine phosphate was greatly reduced or eliminated with increased AMPK purity. In conclusion, these results suggest that creatine phosphate is not a direct regulator of LKB1 or AMPK activity. Creatine phosphate may indirectly modulate AMPK activity by replenishing ATP at the onset of muscle contraction.  相似文献   

3.
Fluorescence lifetimes of dimeric rabbit muscle creatine kinase specifically dansylated at both active sites and the homologous monomeric lobster muscle arginine kinase singly dansylated were determined using phase-modulation methods with global analysis of overdetermined data sets. For both proteins, the data is adequately described by three discrete exponential decays or a Lorentzian double distributed decay. Analogue phase resolved spectroscopy also reveals the presence of at least two distinct fluorophore domains for the dansyl moieties of creatine kinase. The model fluorophore, dansyllysine, exhibits a monoexponential decay with a value that is highly solvent dependent. Because the monomeric arginine kinase exhibits essentially the same decay law as doubly derivatized dimeric creatine kinase, it is proposed that the multiple lifetimes of creatine kinase reflect two or more isomeric dimeric states and not subunit asymmetry within a conformationally homogeneous dimeric population. Exposure of arginine kinase to 6 M guanidinium chloride results in a shift to shorter lifetimes and narrowing of the lifetime distributions. Creatine kinase displays a small narrowing of the distribution, but little change in fractional populations or lifetimes. These results suggest the presence of structural elements resistant to denaturation. The longest lifetime component in the triexponential discrete decay law of doubly dansylated creatine kinase is totally unquenched by acrylamide, whereas the two shorter lifetime components exhibit limited dynamic quenching. Steady-state quenching by acrylamide is significant and reveals a sharp distinction between accessible and nonaccessible dansyl groups. The major mechanism for interaction between the dansyl moieties and acrylamide is, atypically, static quenching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Creatine kinase enzymes are present in tissues such as muscle and brain to interconvert creatine phosphate and ADP, thus providing a system to interconnect energy production and utilization (Bessman, S. P., and Carpenter, C. L. (1985) Annu. Rev. Biochem. 54, 831-862). Creatine kinase isoenzymes in kidney have received little attention since kidney contains relatively low creatine kinase activity compared with muscle and brain and because there is disagreement regarding the identity of the specific isoforms expressed in kidney. Using a combination of chromatographic and immunological techniques, we have identified two isoforms of creatine kinase in rat kidney supernatants, B creatine kinase, and the non-sarcomeric form of the mitochondrial creatine kinase, which represent 82 and 15%, respectively, of the total creatine kinase activity in this tissue. The identity of the non-muscle form of the mitochondrial creatine kinase was confirmed by N-terminal sequence analysis and compared with recently published cDNA sequences (Haas, R. C., and Strauss, A. W. (1990) J. Biol. Chem. 265, 6921-6927). We prepared multiple antisera specific for each isoform using synthetic peptide immunogens based upon nonhomologous regions from the primary sequence of each creatine kinase isoform. Immunocytochemical results demonstrate that both creatine kinase isoforms are colocalized in the inner stripe of the outer medulla in tubules of the distal nephron. A similar distribution of creatine kinase isoforms was obtained when different layers of the renal cortex and medulla were examined for creatine kinase activity and isozyme content using nondenaturing electrophoresis. In general, the distribution of creatine kinase enzymes in kidney corresponds to the regions of greatest ATP utilization, oxygen consumption, and sodium transport. These results suggest a role for creatine kinase enzymes in the coupling of ion transport and oxidative phosphorylation in the distal nephron of the mammalian kidney.  相似文献   

5.
The content of creatine phosphate, creatine and creatine kinase activity in thymus is shown to be 17.6, 5 and 4 times respectively higher, than in thymocytes isolated from this organ, both the level of adenine nucleotides and adenylate energy charge being practically the same. The creatine phosphate content in thymocytes decreases with addition of papaverine and remains unchanged under the influence of adenosine and concanavalin A. The creatine kinase activity increases considerably during the concanavalin A-induced thymocyte blasttransformation reaction. Creatine inhibits blasttransformation of thymocytes stimulated by this mitogen.  相似文献   

6.
Phosphagen kinase evolution. Expression in echinoderms   总被引:2,自引:0,他引:2  
Arginine kinase and creatine kinase that catalyze the transfer of a phosphate group between ATP and arginine and creatine, respectively, play an important role in cellular energetics. In contrast to most animals which exhibit a single phosphagen kinase activity (creatine kinase in chordates and arginine kinase in protostomians), echinoderms exhibit both arginine kinase and creatine kinase activities, sometimes in the same tissue. In contrast to chordates in which creatine kinases are dimers (consisting of two subunits of 40 kDa) and protostomians in which arginine kinases are usually monomers (40 kDa), echinoids contain specific phosphagen kinases: a dimeric arginine kinase (consisting of two subunits of 42 kDa) in eggs and a monomeric creatine kinase (145 kDa) in sperm. We have examined echinoderms from the five existing classes (echinoids, asteroids, ophiuroids, holothurians and crinoids) for the expression of these specific phosphagen kinases in different tissues. Gel filtration was used to determine the molecular masses of the native enzymes. Antibodies specific for arginine kinase or for creatine kinase were used to characterize the subunit composition of arginine kinase and creatine kinase after SDS/PAGE and transfer. In all echinoderms analyzed, arginine kinase always occurred as an enzyme of about 81 kDa consisting of two subunits of 42 kDa and creatine kinase as a monomeric enzyme of 140-155 kDa. The occurrence in echinoderms of both phosphagen kinases with distinct specificities and specific molecular structures is discussed from both a developmental and evolutionary point of view.  相似文献   

7.
Creatine kinase from nurse shark brain and muscle has been purified to apparent homogeneity. In contrast to creatine kinases from most other vertebrate species, the muscle isozyme and the brain isozyme from nurse shark migrate closely in electrophoresis and, unusually, the muscle isozyme is anodal to the brain isozyme. The isoelectric points are 5.3 and 6.2 for the muscle and brain isozymes, respectively. The purified brain preparation also contains a second active protein with pI 6.0. The amino acid content of the muscle isozyme is compared with other isozymes of creatine kinase using the Metzger Difference Index as an estimation of compositional relatedness. All comparisons show a high degree of compositional similarity including arginine kinase from lobster muscle. The muscle isozyme is marginally more resistant to temperature inactivation than the brain isozyme; the muscle protein does not exhibit unusual stability towards high concentrations of urea. Kinetic analysis of the muscle isozyme reveals Michaelis constants of 1.6 mM MgATP, 12 mM creatine, 1.2 mM MgADP and 50 mM creatine phosphate. Dissociation constants for the same substrate from the binary and ternary enzyme-substrate complex do not differ significantly, indicating limited cooperatively in substrate binding. Enzyme activity is inhibited by small planar anions, most severely by nitrate. Shark muscle creatine kinase hybridizes in vitro with rabbit muscle or monkey brain creatine kinase; shark brain isozyme hybridizes with monkey brain or rabbit brain creatine kinase. Shark muscle and shark brain isozymes, under a wide range of conditions, failed to produce a detectable hybrid.  相似文献   

8.
1. The initial formation of arginine phosphate by arginine kinase was studied in the time range 2.8--50 ms by the quenched-flow method. 2. A transient burst phase of product formation was obtained, the amplitude of which was temperature-dependent. At 35 degrees C it was 0.64 mol arginine phosphate/mol arginine kinase and at 12 degrees C, 0.25 mol/mol. 3. These results show that for the reaction pathway of arginine kinase the rate-limiting step follows the formation of arginine phosphate on the enzyme. This is in contrast to the creatine kinase reaction where no transient phase was observed [Engelborghs, Y., Marsh, A. & Gutfreund, H. (1975) Biochem. J. 151, 47--50]. 4. The rate-limiting step on the arginine kinase reaction pathway is only slightly affected by temperature: the change in Kcat with temperature is due to a change of an equilibrium constant pertaining to at least two previous steps.  相似文献   

9.
An affinity chromatography technique for purification of creatine kinase is described. Creatine kinase from human skeletal muscle is retained on a column of p-mercuribenzoate-2-aminoethyl-Sepharose. After removal of contaminating proteins with Tris buffer and a solution of p-mercuribenzoate, the creatine kinase is selectively cluted in 80% yield with a gradient of 2-mercaptoethanol. This method yields a highly purified protein with a specific activity of 300 units/mg.  相似文献   

10.
In most invertebrates, creatine kinase is replaced by arginine kinase, which catalyzes reversibly the transfer of a phosphate group between adenosine triphosphate and arginine. In sea-urchin larvae, arginine kinase only is expressed whereas in adult sea-urchins both arginine kinase and creatine kinase can be found in the same tissue. In order to study their developmental regulation and properties, we have purified arginine kinase to homogeneity from the eggs of the sea-urchin Paracentrotus lividus. The purification involves ethanol and ammonium sulfate precipitations, followed by an anion-exchange chromatography, an affinity chromatography and a gel filtration. A 500-fold increase in specific activity leads to a specific activity of 360 IU/mg protein at 25 degrees C. Arginine kinase (pI = 5.7) is rapidly and irreversibly inactivated at 45 degrees C. Amino acid composition and Km values (2.08 mM for phospho-L-arginine and 1.25 mM for ADP) are also given. Determination of molecular mass by gel filtration and separation by SDS/polyacrylamide gel electrophoresis indicate that the enzyme is an 81-kDa dimer of two subunits of 42 kDa.  相似文献   

11.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   

12.
Detailed methods for polyethylenimine-cellulose thin-layer chromatographic determination of the reactants and products of the creatine kinase and pyruvate kinase reactions are presented. The technique has been developed as a highly sensitive method both for estimation of relative initial rates afforded by creatine and creatine analogs in the creatine kinase reaction and also for estimation of trace amounts of inorganic phosphate and ADP contamination in samples of ATP.  相似文献   

13.
Creatine kinase from beef heart mitochondria is inactivated by 2,3-butanedione. The kinetics of inactivation of the mitochondrial enzyme is biphasic with a bend at a point corresponding to 50% inactivation. The inactivation rate constants of the first fast and the second slow phases of the reaction differ by one order of magnitude, thus suggesting the existence of two types of arginine residues, i.e. "fast" and "slow" ones, with different reactivities. The inactivation rate constant of the slow phase is very close to that for cytoplasmic creatine kinase. At saturating concentrations MgATP and MgADP afford complete protection of the slow phase of inactivation. It is assumed that the "slow" arginine is involved in the binding of metal-nucleotide substrates in the enzyme active center.  相似文献   

14.
Phosphagen kinases catalyze the reversible transfer of a phosphate between ATP and guanidino substrates, a reaction that is central to cellular energy homeostasis. Members of this conserved family include creatine and arginine kinases and have similar reaction mechanisms, but they have distinct specificities for different guanidino substrates. There has not been a full structural rationalization of specificity, but two loops have been implicated repeatedly. A small domain loop is of length that complements the size of the guanidino substrate, and is located where it could mediate a lock-and-key mechanism. The second loop contacts the substrate with a valine in the methyl-substituted guanidinium of creatine, and with a glutamate in the unsubstituted arginine substrate, leading to the proposal of a discriminating hydrophobic/hydrophilic minipocket. In the present work, chimeric mutants were constructed with creatine kinase loop elements inserted into arginine kinase. Contrary to the prior rationalizations of specificity, most had measurable arginine kinase activity but no creatine kinase activity or enhanced phosphocreatine binding. Guided by structure, additional mutations were introduced in each loop, recovering arginine kinase activities as high as 15% and 64% of wild type, respectively, even though little activity would be expected in the constructs if the implicated sites had dominant roles in specificity. An atomic structure of the mismatched complex of arginine kinase with creatine and ADP indicates that specificity can also be mediated by an active site that allows substrate prealignment that is optimal for reactivity only with cognate substrates and not with close homologs that bind but do not react.  相似文献   

15.
Creatine kinase activity was present throughout follicular development and luteinization in rat ovary. The activity of creatine kinase in ovary was about 1/4 that of brain and 1/15th that of heart. The ovary contained the same creatine kinase isoenzyme as brain, and the type did not change during follicular development. Creatine kinase was found to be concentrated in the steroidogenic thecal and luteal cells of the ovary. The activity of creatine kinase was stimulated 23% by choriogonadotropin in luteal tissue.  相似文献   

16.
1. The absence of creatine was demonstrated enzymically in the hen's-egg yolk and in the albumin contrary to former reports. 2. A comparison of the results obtained by enzymic and colorimetric methods to measure creatine is presented. 3. Creatine phosphate was not detected in the yolk extracts. 4. The content of free arginine enzymically assayed was 15.7mumol in the yolk and 3.38mumol in the albumin. Arginine amounts to practically all of the guanidine compounds in the yolk and one-half of those in the albumin. 5. No glycine amidinotransferase activity was found in the egg-yolk homogenates. 6. The heart of the chick embryo does not receive creatine from the egg and the creatine kinase activity present in this organ starting from the 27th hour of incubation suggests that the enzyme is a constitutive one working probably as an adenosine triphosphatase in a way similar to the kinase isolated from rabbit skeletal muscle. 7. Liver glycine amidinotransferase activity appeared clearly after day 5 of incubation. The specific activity reached a maximum at day 12 and then declined; however, the activity per total mass of liver increased steadily during all the prenatal period. Concomitantly with this steady increase a rise in the creatine content of the whole embryo was observed. An analogous increasing relationship between total liver amidinotransferase activity and liver creatine content was also detected during the postnatal period. 8. Repression of amidinotransferase by creatine cannot be accepted as occurring under physiological conditions since an inverse relationship between the two parameters was not observed. 9. Repression of liver amidinotransferase is observed only when pharmacological concentrations of the exogenous creatine are present in the chick liver.  相似文献   

17.
Creatine action on the activity of creatine kinase (ATP: creatine-phosphotransferase; EC 2.7.3.2) and the content of water-soluble proteins in the developing monolayer culture of chick myoblasts are studied. Creatine at concentrations of 1.9-10- minus 3-3.8-10- minus 3 M is shown to increase reliably the creatine kinase activity by 1,1--2,9 times and to reduct considerably the content of water-soluble proteins. Lower concentrations of creatine (3.8-10- minus 5 M) also increased the creatine kinase activity but did not change the contents of water-soluble proteins. The creatine effect was maximal at the period preceding the termination of tissue cells differentiation. In the course of the combined effect of both actinomycin D (50 mcg/plate) and creatine (3.8-10- minus 3 M) the creatine kinase activity was much higher than that in the presence of actinomycin D alone which considerably reduced the enzyme activity as well as the contents of water-soluble proteins.  相似文献   

18.
The Creatine kinase (CK) SYSTEM represents key in a power exchange mediators the structure capable to plural interactions with the majority energy making (Glycolysis and mitochondriuns) and energy consuming (ATPases) structures at use of one multifunctional metabolits--creatine and providing transport macroergs inside a cell. Mitochondrions CK provides synthesis creatine phosphates (CP) from cytoplasmic creatine and energy mitochondriums ATP. CP energetically also is structurally more favourable than ATphi. The MM, MB and BB isoforms provide splitting Kphi and synthesis ATphi for M-ATPases, Ca-ATPases and Na-K-ATPases accordingly. Questions of regulation of activity of enzyme, both in ontogenesis, and in blood are discussed.  相似文献   

19.
Creatine kinase isoenzymes from Torpedo californica electric organ, skeletal muscle, and brain were purified and characterized. Torpedo electric organ and skeletal muscle creatine kinase have identical apparent Mr, electrophoretic mobility, and cyanogen bromide fragments. The electrophoretic mobility of the Torpedo creatine kinase was anodal as compared to mammalian MM creatine kinase. No creatine kinase isoenzyme with an electrophoretic mobility similar to mammalian BB creatine kinase was seen in any of the Torpedo tissues examined. Hybridization studies demonstrate the Torpedo electric organ creatine kinase to be composed of identical subunits and capable of producing an enzymatically active heterodimer when combined with canine BB creatine kinase. Creatine kinase from sucrose gradient-purified Torpedo electric organ acetylcholine receptor-rich membranes has an electrophoretic mobility identical with the cytoplasmic isoenzyme and an apparent Mr identical with mammalian MM creatine kinase. Western blot analysis showed Torpedo electric organ skeletal muscle creatine kinase and acetylcholine receptor-enriched membrane creatine kinase reacted with antiserum specific for canine MM creatine kinase. NH2-terminal amino acid sequence determinations show considerable sequence homology between human MM, Torpedo electric organ, chicken MM, and porcine MM creatine kinase. The acetylcholine receptor-associated creatine kinase is, therefore, identical with the cytoplasmic form from the electric organ and is composed of M-subunits.  相似文献   

20.
In vertebrates, phosphocreatine and ATP are continuously interconverted by the reversible reaction of creatine kinase in accordance with cellular energy needs. Sarcoma tissue and its normal counterpart, creatine-rich skeletal muscle, are good source materials to study the status of creatine and creatine kinase with the progression of malignancy. We experimentally induced sarcoma in mouse leg muscle by injecting either 3-methylcholanthrene or live sarcoma 180 cells into one hind leg. Creatine, phosphocreatine and creatine kinase isoform levels decreased as malignancy progressed and reached very low levels in the final stage of sarcoma development; all these parameters remained unaltered in the unaffected contralateral leg muscle of the same animal. Creatine and creatine kinase levels were also reduced significantly in frank malignant portions of human sarcoma and gastric and colonic adenocarcinoma compared with the distal nonmalignant portions of the same samples. In mice, immunoblotting with antibodies against cytosolic muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase showed that both of these isoforms decreased as malignancy progressed. Expressions of mRNA of muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase were also severely downregulated. In human sarcoma these two isoforms were undetectable also. In human gastric and colonic adenocarcinoma, brain-type creatine kinase was found to be downregulated, whereas ubiquitous mitochondrial creatine kinase was upregulated. These significantly decreased levels of creatine and creatine kinase isoforms in sarcoma suggest that: (a) the genuine muscle phenotype is lost during sarcoma progression, and (b) these parameters may be used as diagnostic marker and prognostic indicator of malignancy in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号