首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   

2.
Diesel exhaust particles cause an impairment of endothelium-dependent vasorelaxation and are associated with cardiopulmonary-related diseases and mortality, but the mechanistic details are poorly understood. Since we reported previously that phenanthraquinone, an environmental chemical contained in diesel exhaust particles, suppresses neuronal nitric oxide synthase (nNOS) activity by shunting electrons away from the normal catalytic pathway, it was hypothesized that phenanthraquinone inhibits endothelial NOS (eNOS) activity and affects vascular tone. Therefore, the effects of phenanthraquinone on eNOS activity, endothelium-dependent relaxation, and blood pressure were examined in the present study. Phenanthraquinone inhibited NO formation evaluated by citrulline formed by total membrane fraction of bovine aortic endothelial cells with an IC(50) value of 0.6 microM. A kinetic study revealed that phenanthraquinone is a competitive inhibitor with respect to NADPH and a noncompetitive inhibitor with respect to L-arginine. Endothelium-dependent relaxation of rat aortic rings by ACh was significantly inhibited by phenanthraquinone (5 microM), whereas the endothelium-independent relaxation by nitroglycerin was not. Furthermore, an intraperitoneal injection of phenanthraquinone (0.36 mmol/kg) to rats resulted in an elevation of blood pressure (1.4-fold, P < 0.01); under this condition, plasma levels of stable NO metabolites, nitrite/nitrate, in phenanthraquinone-treated rats was reduced to 68% of control levels. The present findings suggest that phenanthraquinone has a potent inhibitory action on eNOS activity via a similar mechanism reported for nNOS, thereby causing the suppression of NO-mediated vasorelaxation and elevation of blood pressure.  相似文献   

3.
Oxidized low-density lipoprotein (Ox-LDL) is an atherogenic lipoprotein. It has been suggested that Ox-LDL causes endothelial dysfunction by decreasing the release of endothelium-derived factors (EDRF-NO) or increasing the inactivation of EDRF-NO. The mechanism by which Ox-LDL causes dysfunctional NO during early stages of atherosclerosis is not clear. The purpose of this study was to examine the role of Ox-LDL on nitric oxide synthetase (eNOS), protein kinase C (PKC) activities and cAMP production in bovine aortic endothelial cells (BAEC). Ox-LDL stimulated PKC activity of BAEC but it inhibited both eNOS activity and cAMP production. Ox-LDL partially inhibited the forskolin stimulated cAMP production. Furthermore, we observed that 8Br-cAMP treatment decreased the activity of eNOS in a concentration dependent manner. Serotonin which has a profound inhibitory effect on cAMP production also stimulated eNOS activity. Pertusis toxin treatment blocked the stimulatory action of serotonin on the stimulation of eNOS activity. Our results thus suggest that Ox-LDL inhibit the endothelium-dependent relaxation. One possible mechanism is that Ox-LDL stimulates PKC activity, which in turn increases the phosphorylation of the Gi-protein. Inhibition of Gi-protein then leads to reduced release of NO from endothelial cells and thus causes endothelial dysfunction.  相似文献   

4.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

5.
Objective: To investigate the effect of Iptakalim(Ipt) preventing injury of endothelial microvesicles(EMVs) derived from hypoxia/reoxygenation(H/R)-treated HUVECs on the relaxation of rat thoracic aortic rings and explore the underlying mechanism. Methods: H/R injury model was established to release H/R-EMVs from HUVECs. H/R-EMVs from HUVECs were isolated by ultracentrifugation from the conditioned culture medium. H/R-EMVs were characterized by using Transmission Electron Microscope(TEM). Thoracic aortic rings of rats were incubated with 10~(-7)-10~(-3 )mol/L Ipt and co-cultured with 10 μg/ml H/R-EMVs for 4 hours, and their endothelium- dependent relaxation in response to acetylcholine(ACh) was recorded in vitro. The nitric oxide(NO) production of ACh-treated rat thoracic aortic rings was measured by using Griess reagent. The expression of endothelial NO synthase(e NOS), phosphorylated e NOS(p-e NOS, Ser-1177), serine/threonine kinas(Akt) and phosphorylated Akt(p-Akt, Ser-473) in the thoracic aortic rings of rats was detected by Western blotting. Results: H/R-EMVs were induced by H/R-treated HUVECs and isolated by ultracentrifugation. The isolated H/R-EMVs subjected to TEM revealed small, rounded vesicles(100–1 000 nm) surrounded by a membrane. H/R-EMVs impaired relaxation induced by ACh of rat thoracic aortic rings significantly. Compared with H/R-EMVs treatment individually, relaxation and NO production of rat thoracic aortic rings were increased by Ipt treatment in a concentration-dependent manner(P0.05, P0.01). The expression of total e NOS(t-e NOS) and total Akt(t-Akt) was not affected by Ipt or H/R-EMVs. However, the expression of p-e NOS and p-Akt increased after treated with Ipt(P0.01). Conclusion: Based on H/R-EMVs treatment, ACh induced endothelium-dependent relaxation of rat thoracic aortic rings was ameliorated by Ipt in a concentration-dependent manner. The mechanisms involved the increase in NO production, p-e NOS and p-Akt expression.  相似文献   

6.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

7.
The endothelial nitric-oxide synthase (eNOS) is regulated in part by serine/threonine phosphorylation, but eNOS tyrosine phosphorylation is less well understood. In the present study we have examined the tyrosine phosphorylation of eNOS in bovine aortic endothelial cells (BAECs) exposed to oxidant stress. Hydrogen peroxide and pervanadate (PV) treatment stimulates eNOS tyrosine phosphorylation in BAECs. Phosphorylation is blocked by the Src kinase family inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Moreover, eNOS and c-Src can be coimmunoprecipitated from BAEC lysates by antibodies directed against either protein. Domain mapping and site-directed mutagenesis studies in COS-7 cells transfected with either eNOS alone and then treated with PV or cotransfected with eNOS and constitutively active v-Src identified Tyr-83 (bovine sequence) as the major eNOS tyrosine phosphorylation site. Tyr-83 phosphorylation is associated with a 3-fold increase in basal NO release from cotransfected cells. Furthermore, the Y83F eNOS mutation attenuated thapsigargin-stimulated NO production. Taken together, these data indicate that Src-mediated tyrosine phosphorylation of eNOS at Tyr-83 modulates eNOS activity in endothelial cells.  相似文献   

8.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

9.
We recently reported that soy isoflavones increase gene expression of endothelial nitric-oxide synthase (eNOS) and antioxidant defense enzymes, resulting in improved endothelial function and lower blood pressure in vivo. In this study, we establish that equol (1-100 nM) causes acute endothelium- and nitric oxide (NO)-dependent relaxation of aortic rings and rapidly (2 min) activates eNOS in human aortic and umbilical vein endothelial cells. Intracellular Ca2+ and cyclic AMP levels were unaffected by treatment (100 nM, 2 min) with equol, daidzein, or genistein. Rapid phosphorylation of ERK1/2, protein kinase B/Akt, and eNOS serine 1177 by equol was paralleled by association of eNOS with heat shock protein 90 (Hsp90) and NO synthesis in human umbilical vein endothelial cells, expressing estrogen receptors (ER)alpha and ERbeta. Inhibition of phosphatidylinositol 3-kinase and ERK1/2 inhibited eNOS activity, whereas pertussis toxin and the ER antagonists ICI 182,750 and tamoxifen had negligible effects. Our findings provide the first evidence that nutritionally relevant plasma concentrations of equol (and other soy protein isoflavones) rapidly stimulate phosphorylation of ERK1/2 and phosphatidylinositol 3-kinase/Akt, leading to the activation of NOS and increased NO production at resting cytosolic Ca2+ levels. Identification of the nongenomic mechanisms by which equol mediates vascular relaxation provides a basis for evaluating potential benefits of equol in the treatment of postmenopausal women and patients at risk of cardiovascular disease.  相似文献   

10.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

11.
Accumulating evidence suggests that hyperbaric oxygen (HBO) stimulates neuronal nitric oxide (NO) synthase (NOS) activity, but the influence on endothelial NOS (eNOS) activity and vascular NO bioavailability remains unclear. We used a bioassay employing rat aortic rings to evaluate vascular NO bioavailability. HBO exposure to 2.8 atm absolute (ATA) in vitro decreased ACh relaxation. This effect remained unchanged, despite treatment with SOD-polyethylene glycol and catalase-polyethylene glycol, suggesting that the reduction in endothelium-derived NO bioavailability was independent of superoxide production. In vitro HBO induced contraction of resting aortic rings with and without endothelium, and these contractions were reduced by the NOS inhibitor N(omega)-nitro-l-arginine. In addition, in vitro HBO attenuated the vascular contraction produced by norepinephrine, and this effect was reversed by N(omega)-nitro-l-arginine, but not by endothelial denudation. These findings indicate stimulation of extraendothelial NO production during HBO exposure. A radiochemical assay was used to assess NOS activity in rat aortic endothelial cells. Catalytic activity of eNOS in cell homogenates was not decreased by HBO, and in vivo HBO exposure to 2.8 ATA was without effect on eNOS activity and/or vascular NO bioavailability in vitro. We conclude that HBO reduces endothelium-derived NO bioavailability independent of superoxide production, and this effect seems to be unrelated to a decrease in eNOS catalytic activity. In addition, HBO increases the resting tone of rat aortic rings and attenuates the contractile response to norepinephrine by endothelium-independent mechanisms that involve extraendothelial NO production.  相似文献   

12.
The formation of nitric oxide (NO) from L-arginine by vascular endothelial cells and its relationship to endothelium-dependent relaxation of vascular rings was studied. The release of NO, measured by bioassay or chemiluminescence, from porcine aortic endothelial cells stimulated with bradykinin was enhanced by infusions of L-, but not D-arginine. The release of 15NO, determined by high resolution mass spectrometry, from L-guanidino 15N (99%) arginine was also observed, indicating that NO is formed from the terminal guanidino nitrogen atom(s) of L-arginine. L-NG-monomethyl arginine (L-NMMA), but not D-NMMA, inhibited both the generation of NO by endothelial cells in culture and the endothelium-dependent relaxation of rabbit aortic rings. Both these effects were reversed by L-arginine. These data indicate that L-arginine is the physiological precursor for the formation of NO which mediates endothelium-dependent relaxation.  相似文献   

13.
Liu D  Dillon JS 《Steroids》2004,69(4):279-289
Dehydroepiandrosterone (DHEA) improves vascular function, but the mechanism of this effect is unclear. Since nitric oxide (NO) regulates vascular function, we hypothesized that DHEA affects the vasculature by increasing endothelial NO production. Physiological concentrations of DHEA stimulated NO release from intact bovine aortic endothelial cells (BAEC) within 5min. This effect was mediated by activation of endothelial nitric oxide synthase (eNOS) in BAEC and human umbilical vein endothelial cells (HUVEC). Dehydroepiandrosterone increased cyclic GMP (cGMP) levels in BAEC, consistent with its effect on NO production. Albumin-conjugated DHEA also stimulated NO release, suggesting that DHEA stimulates eNOS by a plasma membrane-initiated signal. Tamoxifen blocked estrogen-stimulated NO release from BAEC, but did not inhibit the DHEA effect. Pertussis toxin abolished the acute effect of DHEA on NO release. Dehydroepiandrosterone had no effect on intracellular calcium fluxes. However, inhibition of tyrosine kinases or the mitogen-activated protein (MAP) kinase kinase (MEK) blocked NO release and cGMP production in response to DHEA. These findings demonstrate that physiological concentrations of DHEA acutely increase NO release from intact vascular endothelial cells, by a plasma membrane-initiated mechanism. This action of DHEA is mediated by a steroid-specific, G-protein coupled receptor, which activates eNOS in both bovine and human cells. The release of NO is independent of intracellular calcium mobilization, but depends on tyrosine- and MAP kinases. This cellular mechanism may underlie some of the cardiovascular protective effects proposed for DHEA.  相似文献   

14.
目的:以缺氧/复氧诱导人脐静脉内皮细胞(HUVECs)释放的微囊泡(H/R-EMVs)处理大鼠胸主动脉环,造成其舒张功能损伤,探究黄芪苷Ⅳ(AST)对大鼠胸主动脉环舒张功能的影响及相关机制。方法:采用缺氧12 h/复氧4 h的方法诱导体外培养的HUVECs产生MVs,H/R-EMVs保存于D-Hank's液中备用。雄性Wistar大鼠开胸取出胸主动脉,制备3~4 mm宽、内皮完整的胸主动脉环。实验分为6组:H/R-EMVs组,在孵育胸主动脉环的培养基中加入H/R-EMVs,使其终浓度为10μg/ml;不同剂量AST组分别采用10、20、40、60 mg/L AST与10μg/ml H/R-EMVs共同孵育胸主动脉环;对照组给予等体积的D-Hank's溶液。孵育时间为4 h,每组各测定5个血管环。观察AST对舒张功能的影响,检测一氧化氮(NO)含量及t-eNOS、p-eNOS、t-Akt、p-Akt、ERK1/2和p-ERK1/2蛋白质水平。结果:H/R-EMVs对大鼠胸主动脉环舒张功能有明显的抑制作用(P<0.01)。与H/R-EMVs组相比,AST 20、40和60 mg/L组剂量依赖性地提高大鼠胸主动脉环的舒张率(P<0.01),使NO含量增加(P<0.05,P<0.01);t-eNOS、t-Akt和ERK1/2蛋白质水平不变,p-eNOS、p-Akt和p-ERK1/2蛋白质水平增高(P<0.01)。结论:AST可显著改善H/REMVs损伤的大鼠胸主动脉环的舒张功能,其机制与提高NO含量及增加p-eNOS、p-Akt和p-ERK1/2蛋白质水平有关。  相似文献   

15.
Endothelial lipase (EL) changes structural and functional properties of high-density lipoprotein (HDL). HDL is a relevant modulator of endothelial nitric oxide synthase (eNOS) activity, but the effect of EL on HDL induced eNOS-activation has not yet been investigated. Here, we examined the impact of EL-modified HDL (EL-HDL) on eNOS activity, subcellular trafficking, and eNOS- dependent vasorelaxation. EL-HDL and empty virus (EV)-HDL as control were isolated from human serum incubated with EL-overexpressing or EV infected HepG2 cells. EL-HDL exhibited higher capacity to induce eNOS phosphorylation at Ser1177 and eNOS activity in EA.hy 926 cells, as well as eNOS-dependent vasorelaxation of mouse aortic rings compared to control HDL. As revealed by confocal and structured illumination-microscopy EL-HDL-driven induction of eNOS was accompanied by an increased eNOS-GFP targeting to the plasma membrane and a lower eNOS-GFP colocalization with Golgi and mitochondria. Widefield microscopy of filipin stained cells revealed that EL-HDL lowered cellular free cholesterol (FC) and as found by thin-layer chromatography increased cellular cholesterol ester (CE) content. Additionally, cholesterol efflux capacity, acyl-coenzyme A: cholesterol acyltransferase activity, and HDL particle uptake were comparable between EL-HDL and control HDL. In conclusion, EL increases eNOS activating capacity of HDL, a phenomenon accompanied by an enrichment of the plasma membrane eNOS pool, a decreased cell membrane FC and increased cellular CE content.  相似文献   

16.
17.
We have attempted to determine the chronic effects of doxorubicin, a commonly used anticancer agent, on vascular endothelium using an organ culture system. In rabbit mesenteric arteries treated with 0.3 microM doxorubicin for 7 days, rounding and concentrated nuclei and TUNEL-positive staining were observed in endothelial cells, indicating DNA damage and the induction of apoptosis. However, the endothelium-dependent relaxation induced by substance P and the expression of mRNA encoding endothelial NO synthase (eNOS) did not differ from those in control arteries. In arteries treated with a higher concentration (1 microM) of doxorubicin, apoptosis and damage to nuclei occurred in the endothelial cells at the third day of treatment, and the detachment and excoriation of endothelium from the tunica interna of the vascular wall were also observed. The impairment of endothelium-dependent relaxation was observed at the fifth day of the treatment with 1 microM doxorubicin. Additionally, apoptotic change in the smooth muscle layer was observed at this concentration of doxorubicin. Apoptotic phenomena were further confirmed by DNA fragmentation using isolated bovine aortic endothelial cells (BAECs) and A7r5 vascular smooth muscle cells, and it was revealed that BAECs are more sensitive than A7r5 to the apoptotic effect of doxorubicin. These results suggest that chronic treatment with doxorubicin at therapeutic concentrations induces apoptosis and excoriation of endothelial cells, which diminishes endothelium-dependent relaxation.  相似文献   

18.
Endothelial nitric-oxide synthase (eNOS) is phosphorylated at Ser-1179 (bovine sequence) by Akt after growth factor or shear stress stimulation of endothelial cells, resulting in increased eNOS activity. Purified eNOS is also phosphorylated at Thr-497 by purified AMP-activated protein kinase, resulting in decreased eNOS activity. We investigated whether bradykinin (BK) stimulation of bovine aortic endothelial cells (BAECs) regulates eNOS through Akt activation and Ser-1179 or Thr-497 phosphorylation. Akt is transiently activated in BK-stimulated BAECs. Activation is blocked completely by wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase, suggesting that Akt activation occurs downstream from phosphatidylinositol 3-kinase. BK stimulates a transient phosphorylation of eNOS at Ser-1179 that is correlated temporally with a transient dephosphorylation of eNOS at Thr-497. Phosphorylation at Ser-1179, but not dephosphorylation at Thr-497, is blocked by wortmannin and LY294002. BK also stimulates a transient nitric oxide (NO) release from BAECs with a time-course similar to Ser-1179 phosphorylation and Thr-497 dephosphorylation. NO release is not altered by wortmannin. BK-stimulated dephosphorylation of Thr-497 and NO release are blocked by the calcineurin inhibitor, cyclosporin A. These data suggest that BK activation of eNOS in BAECs primarily involves deinhibition of the enzyme through calcineurin-mediated dephosphorylation at Thr-497.  相似文献   

19.
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.  相似文献   

20.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号