首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of two enzymes, a 168-kDa protein and a 40-kDa protein, OmtA, purified from the filamentous fungus Aspergillus parasiticus were reported to convert the aflatoxin pathway intermediate sterigmatocystin to O-methylsterigmatocystin in vitro. Our initial goal was to determine if OmtA is necessary and sufficient to catalyze this reaction in vivo and if this reaction is necessary for aflatoxin synthesis. We generated A. parasiticus omtA-null mutant LW1432 and a maltose binding protein-OmtA fusion protein expressed in Escherichia coli. Enzyme activity analysis of OmtA fusion protein in vitro confirmed the reported catalytic function of OmtA. Feeding studies conducted with LW1432 demonstrated a critical role for OmtA, and the reaction catalyzed by this enzyme in aflatoxin synthesis in vivo. Because of a close regulatory link between aflatoxin synthesis and asexual sporulation (conidiation), we hypothesized a spatial and temporal association between OmtA expression and conidiospore development. We developed a novel time-dependent colony fractionation protocol to analyze the accumulation and distribution of OmtA in fungal colonies grown on a solid medium that supports both toxin synthesis and conidiation. OmtA-specific polyclonal antibodies were purified by affinity chromatography using an LW1432 protein extract. OmtA was not detected in 24-h-old colonies but was detected in 48-h-old colonies using Western blot analysis; the protein accumulated in all fractions of a 72-h-old colony, including cells (0 to 24 h) in which little conidiophore development was observed. OmtA in older fractions of the colony (24 to 72 h) was partly degraded. Fluorescence-based immunohistochemical analysis conducted on thin sections of paraffin-embedded fungal cells from time-fractionated fungal colonies demonstrated that OmtA is evenly distributed among different cell types and is not concentrated in conidiophores. These data suggest that OmtA is present in newly formed fungal tissue and then is proteolytically cleaved as cells in that section of the colony age.  相似文献   

2.
The biosynthesis of aflatoxin in Aspergillus parasiticus is a complex process that involves the activities of at least 18 pathway enzymes. The distribution of these enzymes within fungal colonies and fungal cells is not clearly understood. The objective of this study was to investigate the distribution and subcellular location of Nor-1, Ver-1, and OmtA, which represent early, middle, and late enzymatic activities, respectively, in the aflatoxin biosynthetic pathway. The distribution of these three enzymes within A. parasiticus SU-1 was analyzed in time-fractionated, 72-h fungal colonies (fraction 1, 48–72 h; fraction 2, 24–48 h; fraction 3, 0–24 h). Western blot analysis and immunofluorescence microscopy demonstrated the highest abundance of Nor-1, Ver-1, and OmtA in colony fraction 2. Fungal tissues in this fraction were analyzed by immunoelectron microscopy. Nor-1 and Ver-1 were primarily localized to the cytoplasm, suggesting that they are cytosolic enzymes. OmtA was also detected in the cytoplasm. However, in cells located near the basal (substrate) surface of the colony, OmtA was predominantly detected in organelles tentatively identified as vacuoles. The role of this organelle in toxin biosynthesis is unclear. The relative distribution of OmtA to the cytoplasm or to vacuole-like organelles may depend on the age and/or physiological condition of the fungal cells.  相似文献   

3.
Aflatoxin, a mycotoxin synthesized by Aspergillus spp., is among the most potent naturally occurring carcinogens known. Little is known about the subcellular organization of aflatoxin synthesis. Previously, we used transmission electron microscopy and immunogold labeling to demonstrate that the late aflatoxin enzyme OmtA localizes primarily to vacuoles in fungal cells on the substrate surface of colonies. In the present work, we monitored subcellular localization of Ver-1 in real time in living cells. Aspergillus parasiticus strain CS10-N2 was transformed with plasmid constructs that express enhanced green fluorescent protein (EGFP) fused to Ver-1. Analysis of transformants demonstrated that EGFP fused to Ver-1 at either the N or C terminus functionally complemented nonfunctional Ver-1 in recipient cells. Western blot analysis detected predominantly full-length Ver-1 fusion proteins in transformants. Confocal laser scanning microscopy demonstrated that Ver-1 fusion proteins localized in the cytoplasm and in the lumen of up to 80% of the vacuoles in hyphae grown for 48 h on solid media. Control EGFP (no Ver-1) expressed in transformants was observed in only 13% of the vacuoles at this time. These data support a model in which middle and late aflatoxin enzymes are synthesized in the cytoplasm and transported to vacuoles, where they participate in aflatoxin synthesis.  相似文献   

4.
It was long been noted that secondary metabolism is associated with fungal development. In Aspergillus nidulans, conidiation and mycotoxin production are linked by a G protein signaling pathway. Also in A. nidulans, cleistothecial development and mycotoxin production are controlled by a gene called veA. Here we report the characterization of a veA ortholog in the aflatoxin-producing fungus A. parasiticus. Cleistothecia are not produced by Aspergillus parasiticus; instead, this fungus produces spherical structures called sclerotia that allow for survival under adverse conditions. Deletion of veA from A. parasiticus resulted in the blockage of sclerotial formation as well as a blockage in the production of aflatoxin intermediates. Our results indicate that A. parasiticus veA is required for the expression of aflR and aflJ, which regulate the activation of the aflatoxin gene cluster. In addition to these findings, we observed that deletion of veA reduced conidiation both on the culture medium and on peanut seed. The fact that veA is necessary for conidiation, production of resistant structures, and aflatoxin biosynthesis makes veA a good candidate gene to control aflatoxin biosynthesis or fungal development and in this way to greatly decrease its devastating impact on health and the economy.  相似文献   

5.
Caleosins are a small family of calcium-binding proteins endowed with peroxygenase activity in plants. Caleosin-like genes are present in fungi; however, their functions have not been reported yet. In this work, we identify a plant caleosin-like protein in Aspergillus flavus that is highly expressed during the early stages of spore germination. A recombinant purified 32-kDa caleosin-like protein supported peroxygenase activities, including co-oxidation reactions and reduction of polyunsaturated fatty acid hydroperoxides. Deletion of the caleosin gene prevented fungal development. Alternatively, silencing of the gene led to the increased accumulation of endogenous polyunsaturated fatty acid hydroperoxides and antioxidant activities but to a reduction of fungal growth and conidium formation. Two key genes of the aflatoxin biosynthesis pathway, aflR and aflD, were downregulated in the strains in which A. flavus PXG (AfPXG) was silenced, leading to reduced aflatoxin B1 production in vitro. Application of caleosin/peroxygenase-derived oxylipins restored the wild-type phenotype in the strains in which AfPXG was silenced. PXG-deficient A. flavus strains were severely compromised in their capacity to infect maize seeds and to produce aflatoxin. Our results uncover a new branch of the fungal oxylipin pathway and may lead to the development of novel targets for controlling fungal disease.  相似文献   

6.
It was long been noted that secondary metabolism is associated with fungal development. In Aspergillus nidulans, conidiation and mycotoxin production are linked by a G protein signaling pathway. Also in A. nidulans, cleistothecial development and mycotoxin production are controlled by a gene called veA. Here we report the characterization of a veA ortholog in the aflatoxin-producing fungus A. parasiticus. Cleistothecia are not produced by Aspergillus parasiticus; instead, this fungus produces spherical structures called sclerotia that allow for survival under adverse conditions. Deletion of veA from A. parasiticus resulted in the blockage of sclerotial formation as well as a blockage in the production of aflatoxin intermediates. Our results indicate that A. parasiticus veA is required for the expression of aflR and aflJ, which regulate the activation of the aflatoxin gene cluster. In addition to these findings, we observed that deletion of veA reduced conidiation both on the culture medium and on peanut seed. The fact that veA is necessary for conidiation, production of resistant structures, and aflatoxin biosynthesis makes veA a good candidate gene to control aflatoxin biosynthesis or fungal development and in this way to greatly decrease its devastating impact on health and the economy.  相似文献   

7.
The penultimate step in the aflatoxin biosynthetic pathway of the filamentous fungi Aspergillus flavus and A. parasiticus involves conversion of sterigmatocystin to O-methylsterigmatocystin. An S-adenosylmethionine-dependent methyltransferase that catalyzes this reaction was purified to homogeneity (> 90%) from 78-h-old mycelia of A. parasiticus SRRC 163. Purification of this soluble enzyme was carried out by five soft-gel chromatographic steps: cell debris remover treatment, QMA ACELL chromatography, hydroxylapatite-Ultrogel chromatography, DEAE-Spherodex chromatography, and Octyl Avidgel chromatography, followed by MA7Q high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the protein peak from this step on silver staining identified a single band of approximately 40 kDa. This purified protein was distinct from the dimeric 168-kDa methyltransferase purified from the same fungal strain under identical growth conditions (D. Bhatnagar, A. H. J. Ullah, and T. E. Cleveland, Prep. Biochem. 18:321-349, 1988). The chromatographic behavior and N-terminal sequence of the 40-kDa enzyme were also distinct from those of the 168-kDa methyltransferase. The molar extinction coefficient of the 40-kDa enzyme at 278 nm was estimated to be 4.7 x 10(4) M-1 cm-1 in 50 mM potassium phosphate buffer (pH 7.5).  相似文献   

8.
9.
Aflatoxins are highly toxic and carcinogenic fungal secondary metabolites. At least 18 enzyme activities are required for aflatoxin biosynthesis in the filamentous fungus Aspergillus parasiticus. One of these enzymes, versicolorin B synthase (VBS), catalyzes bisfuran ring closure in versiconal hemiacetal (a reaction near the middle of the pathway) to form versicolorin B. This reaction is required for the subsequent activation to aflatoxin B1-8,9 epoxide, a highly reactive and toxic aflatoxin metabolite, and is important for aflatoxin toxicity. We analyzed the localization of VBS in the aflatoxin-producing strain A. parasiticus SU-1 grown on solid media using a colony fractionation technique developed previously. A highly specific polyclonal antibody, raised against a maltose-binding protein–VBS fusion protein synthesized in Escherichia coli, was used to detect VBS in SU-1 grown on a rich solid medium via immunofluorescence confocal laser scanning microscopy (CLSM) and immunogold transmission electron microscopy (TEM). VBS was detected in both vegetative hyphae and in asexual developmental structures, called conidiophores. Western blot and CLSM analyses demonstrated the highest abundance of VBS in colony fraction S2 consisting of cells that had grown for 24–48 h; this fraction also contained the highest levels of newly developed conidiophores and the highest abundance of aflatoxin B1, consistent with VBS abundance. At the subcellular level, CLSM and TEM detected VBS distributed throughout the cytoplasm and concentrated in ring-like structures surrounding nuclei. It is uncertain whether enzymatically active VBS is present in either or both locations.  相似文献   

10.
《Experimental mycology》1994,18(1):33-47
Olsson, S. 1994. Uptake of glucose and phosphorus by growing colonies of Fusarium oxysporum as quantified by image analysis. Experimental Mycology 18, 33-47. The simplest of all heterogeneous environments for fungal colony growth is the petri dish with an agar medium. As the colony grows there will be a depression of nutrient concentrations under the colony caused by the uptake of nutrients by the growing colony. Image analysis methods have been developed for measuring medium concentrations of glucose and phosphorus with simultaneous biomass density determinations in agar systems. Maps of the concentrations in the agar medium under the colony and of colony biomass density were produced. A new method for weighing fungal colonies grown on agar is also presented. For Fusarium oxysporum phosphorus and glucose uptake from the medium was the same irrespective of the C/mineral ratios in the medium within the measured range of ratios. Even the concentration profiles of the nutrients under the colony were the same irrespective of nutrient ratios. Distribution of biomass density was affected by differences in glucose concentrations, being highest at the colony margin at the lower concentrations. The results indicate that the fungal colony is able to take up nutrients at the margin in excess of the local needs.  相似文献   

11.
The accumulation of both activity and protein of a methyltransferase (MTase) from Aspergillus parasiticus, which catalyzes conversion of sterigmatocystin to O-methylsterigmatocystin in the aflatoxin pathway, was detected in fungal mycelia slightly before the onset of aflatoxin biosynthesis in the same cultures. MTase protein was identified in mycelial postmicrosomal (soluble protein) fractions by electrophoresis and subsequent immunoblotting using antiserum raised against purified MTase protein; MTase activity was determined by measuring the rate of conversion of sterigmatocystin to O-methylsterigmatocystin in the presence of soluble protein fractions. Using the above technique, it was determined that MTase protein as well as MTase activity increased sharply in mycelia 30 to 45 h after inoculation, shortly after which, mycelial growth rate began to decline. During the subsequent time interval (45 to 70 h after inoculation), a sharp increase in aflatoxin levels was detected in the culture medium. Results obtained from an experiment in which cycloheximide was added to cultures at various times to inhibit protein synthesis and from an experiment in which mycelial proteins were radiolabelled to identify newly synthesized proteins indicated that accumulation of MTase activity and protein in late growth phase mycelia is due to de novo protein synthesis.  相似文献   

12.
The fluG gene is a member of a family of genes required for conidiation and sterigmatocystin production in Aspergillus nidulans. We examined the role of the Aspergillus flavus fluG orthologue in asexual development and aflatoxin biosynthesis. Deletion of fluG in A. flavus yielded strains with an approximately 3-fold reduction in conidiation but a 30-fold increase in sclerotial formation when grown on potato dextrose agar in the dark. The concurrent developmental changes suggest that A. flavus FluG exerts opposite effects on a mutual signaling pathway for both processes. The altered conidial development was in part attributable to delayed expression of brlA, a gene controlling conidiophore formation. Unlike the loss of sterigmatocystin production by A. nidulans fluG deletion strains, aflatoxin biosynthesis was not affected by the fluG deletion in A. flavus. In A. nidulans, FluG was recently found to be involved in the formation of dehydroaustinol, a component of a diffusible signal of conidiation. Coculturing experiments did not show a similar diffusible meroterpenoid secondary metabolite produced by A. flavus. These results suggest that the function of fluG and the signaling pathways related to conidiation are different in the two related aspergilli.  相似文献   

13.
Trichoderma viride is a deuteromycete in which conidiations is photo-inducible. Conidiation results when colonies grow in the day-night regime or when colonies grown in the dark are exposed to short pulses of near UV or blue light. Conidiation was induced by light pulses at intervals of 8, 16, 24, 48 or 72 hours. Several membrane-damaging agents, DNA-intercalating drugs and inhibitors of RNA or protein synthesis prevent photo-conidiation. A hypothetical scheme of photo-induced conidiation, based on the results with metabolic inhibitors, is presented. A sudden increase of intracellular ATP was observed as an immediate photo-response. The ATP level is dose-dependent, with a maximum at 1.2 klx. Drugs interfering with various signalling pathways were tested in an attempt to analyze the signal pathways whereby light pulses induce conidiation. Nonconidiating and color mutants have been obtained and used in complementation studied by means of heterokaryosis and protoplast fusion. In a color mutant with brown conidia, conidiation is accompanied by high production and excretion of anthraquinone metabolites. Modified version of a lecture given at the7th International Congress of IUMS Mycology Division, Prague, July 3rd–8th, 1994.  相似文献   

14.
Aflatoxins are a series of highly toxic and carcinogenic secondary metabolites that are synthesized by Aspergillus species. The degradation of aflatoxin enzymes is an important regulatory mechanism which modulates mycotoxin producing. The retromer complex is responsible for the retrograde transport of specific biomolecules and the vacuolar fusion in the intracellular transport. Late endosomal-associated GTPase (Rab7) has been shown to be a downstream effector protein of the retromer complex. A deficiency in the retromer complex or Rab7 results in several cellular trafficking problems in yeast and humans, like protein abnormal accumulation. However, whether retromer dysfunction is involved in aflatoxin synthesis remains unclear. Here, we report that the core retromer complex, which comprises three vacuolar protein sorting-associated proteins (AflVps26-AflVps29-AflVps35), is essential for the development of dormant and resistant fungal forms such as conidia (asexual reproductive spore) and sclerotia (hardened fungal mycelium), as well as aflatoxin production and pathogenicity, in Aspergillus flavus. In particular, we show the AflVps26-AflVps29-AflVps35 complex is negatively correlated with aflatoxin exportation. Structural simulation, site-specific mutagenesis, and coimmunoprecipitation experiments showed that interactions among AflVps26, AflVps29, and AflVps35 played crucial roles in the retromer complex executing its core functions. We further found an intrinsic connection between AflRab7 and the retromer involved in vesicle-vacuole fusion, which in turn affected the accumulation of aflatoxin synthesis-associated enzymes, suggesting that they work together to regulate the production of toxins. Overall, these results provide mechanistic insights that contribute to our understanding of the regulatory role of the core retromer complex in aflatoxin metabolism.  相似文献   

15.
16.
Biofilm-forming marine bacterium Paenibacillus lautus NE3B01 was isolated from a mangrove ecosystem, Odisha, India. This isolate formed a swarming type of colony pattern on the solid culture medium with 0.5–2 % agar. Phase contrast microscopy study of a growing colony of P. lautus on solid media and swarming pattern revealed the existence of two phenotypically distinct cells (i.e. cocci and rods) across the colonies. However, in actively growing planktonic culture, only rod-shaped cells were observed. Biofilm growth studies (crystal violet assay) with the isolate showed significant biofilm formation by 6 h, and the detachment phase was observed after 18 h. Biofilm parameters (such as total biomass, roughness coefficient, biofilm thickness, etc.) of 24-h-old P. lautus biofilm were studied by confocal scanning laser microscopy (CSLM). The CSLM study showed that P. lautus formed a biofilm with an average thickness of 14.8 ± 2.6 μm, a high roughness coefficient (0.379 ± 0.103) and surface to bio-volume ratio (4.59 ± 1.12 μm2/μm3), indicating a highly uneven topography of the biofilm. This also indicates that the 24-h-old biofilm is in dispersal phase. Scanning electron microphotographs of P. lautus also supported the existence of two distinct phenotypes of P. lautus. The current findings suggest that P. lautus has two vegetative phenotypes and to decongest the overcrowded biofilm the bacterium can switch over to motile rods from nonmotile cocci and vice versa.  相似文献   

17.
Aflatoxin biosynthesis in Aspergillus parasiticus requires at least 17 enzyme activities (from acetate). Although the activities of most aflatoxin biosynthetic enzymes have been established, the mechanisms that govern transport and sub-cellular localization of these enzymes are not clear. We developed plasmid constructs that express Nor-1 fused to a green fluorescent protein reporter (EGFP) to monitor transport and localization of this early pathway enzyme in real time in Aspergillus parasiticus. Plasmids expressing EGFP fused to Nor-1 were introduced into A. parasiticus B62 (carries non-functional Nor-1). Transformants were screened for increased aflatoxin accumulation (restored Nor-1 activity) on coconut agar medium and for EGFP expression using fluorescence microscopy. Increased aflatoxin accumulation was confirmed by TLC and ELISA. Nor-1 fused to EGFP at either the N- or C- terminus functionally complemented non-functional Nor-1 in B62 and increased aflatoxin synthesis to wild-type (N-terminus) or lower levels (C-terminus). We detected full-length Nor-1 fusion proteins in transformants with increased aflatoxin accumulation (Western blot) and determined that the expression plasmid integrated at the nor-1 locus in these cells (Southern blot). Confocal laser scanning microscopy (CLSM) demonstrated that Nor-1 fusion proteins localized in the cytoplasm and vacuoles of fungal hyphae grown on aflatoxin-inducing solid media for 48 h; control EGFP (no Nor-1) did not localize to vacuoles until 72 h. The highest rate of aflatoxin synthesis coincided with the highest rate of transport of Nor-1 fusion proteins to the vacuole strongly suggesting that Nor-1 is synthesized in the cytoplasm and transported to the vacuole to carry out an early step in aflatoxin synthesis.  相似文献   

18.
The relative rates of initiation of alpha- and beta-globin mRNA translation in a Krebs II ascites cell-free system are differently modulated by a 50-kDa protein and two fractions containing either a 28-kDa or a 24-kDa polypeptide. Each of these fractions stimulated a discrete step that limits initiation of protein synthesis, but other rate-limiting steps take place upstream and/or downstream, resulting in characteristic kinetics of the stimulation of alpha- and beta-globin synthesis. The ascites extracts appear to be deficient in these activities.  相似文献   

19.
Seyed Ali Safavi 《Biologia》2012,67(6):1062-1068
Stability of pathogenicity in continuous in vitro cultivation is desirable for the purpose of large-scale production of a mycoinsecticide. Fungal biocontrol agents may lose virulence when maintain on artificial media, resulting in products of commercially inferior quality. In this research, two isolates (DEBI007 and DEBI008) of entomopathogenic fungus Beauveria bassiana were investigated for their stability following fifteen serial in vitro transfers assaying virulence to mealworm larvae, conidiation, and hyphal development on artificial culture as some fungal virulence determinants. Moreover, role of insect cuticle on fungal virulence restoration and protease 1 (Pr1) activity was considered as the most important factor. Although radial hyphal development and colony colour on in vitro culture was not affected following serial transfers, conidiation and Pr1 activity of both fungal isolates were reduced remarkably after fifteen transfers compared with control. Similarly, mean lethal concentration (LC50) values were increased as the number of serial transfers on artificial diet increased, although these increases were not statistically significant in both isolates as the confidential limits of LC50 values were overlapping. Our results revealed that attenuation of entomopathogenic fungi following serial in vitro transfers is a combination of interconnected factors. Other probable components such as pathogenicity determinants in this interaction should be explored in next researches.  相似文献   

20.
Kim JM  Lu L  Shao R  Chin J  Liu B 《Genetics》2006,173(2):685-696
The kinase cascade of the septation initiation network (SIN), first revealed in fission yeast, activates the contraction of the actomyosin ring, and plays an essential role in fungal septation. Mob1p, an evolutionarily conserved SIN protein, is associated with the most downstream kinase of this cascade in fission yeast. In this study, the mobA gene encoding a homologous protein was isolated from the filamentous fungus Aspergillus nidulans, whose mycelium is made of multinucleate cells. The MOBA protein was required for septation and conidiation, but was not essential for hyphal extension and colony formation. To identify genes that act antagonistically against the SIN, UV mutagenesis was carried out to isolate suppressor (smo) mutations that restored conidiation when MOBA was not expressed. Microscopic examination indicated that the restored conidiation was concomitant with restored septation in the absence of the MOBA protein. Eight recessive smo mutations in five complementation groups also bypassed the requirement of the SIN kinases SEPH and SIDB for septum formation and conidiation. However, none of these smo mutations affected the localization of MOBA. Among smo mutations, smoA and smoB mutations caused reduced hyphal growth and colony formation. They also rendered hypersensitivity to low doses of the microtubule-depolymerizing agent benomyl for conidiation. Therefore, in A. nidulans, proteins encoded by the smo genes likely have an antagonistic interaction against the SIN pathway to regulate septation and conidiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号