首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-betas (TGF-betas) are produced by most cells in large latent complexes of TGF-beta and its propeptide (LAP) associated with a binding protein. The latent TGF-beta binding proteins (LTBPs-1, -2 and -3) mediate the secretion and, subsequently, the association of latent TGF-beta complexes with the extracellular matrix (ECM). The association of beta1-LAP with LTBP-1 was characterized at the molecular level with an expression system in mammalian cells, where TGF-beta1 and various fragments of LTBP-1 were co-expressed and secreted with the aid of a signal peptide synthesized to the LTBP-1 constructs. Immunoblotting of the fusion protein complexes indicated that the third 8-Cys repeat of LTBP-1 bound covalently to the LAP region of TGF-beta1. The cysteine required for the association between LTBP-1 and beta1-LAP was mapped to Cys33 of beta1-LAP. The N-terminal region of LTBP-1 consisting of the first 400 amino acids was found to associate covalently with the ECM. The data indicate that an 8-Cys repeat of LTBP is capable of covalent and specific protein-protein interactions. These interactions are mediated by exchanging cysteine disulfide bonds between the core 8-Cys repeat and an optionally associated protein during the secretion. This is, to our knowledge, the first demonstration of an extracellular protein module that is able to exchange cysteine disulfide bonds with heterologous ligand proteins.  相似文献   

2.
Transforming growth factor (TGF)-betas are secreted in large latent complexes consisting of TGF-beta, its N-terminal latency-associated peptide (LAP) propeptide, and latent TGF-beta binding protein (LTBP). LTBPs are required for secretion and subsequent deposition of TGF-beta into the extracellular matrix. TGF-beta1 associates with the 3(rd) 8-Cys repeat of LTBP-1 by LAP. All LTBPs, as well as fibrillins, contain multiple 8-Cys repeats. We analyzed the abilities of fibrillins and LTBPs to bind latent TGF-beta by their 8-Cys repeats. 8-Cys repeat was found to interact with TGF-beta1*LAP by direct cysteine bridging. LTBP-1 and LTBP-3 bound efficiently all TGF-beta isoforms, LTBP-4 had a much weaker binding capacity, whereas LTBP-2 as well as fibrillins -1 and -2 were negative. A short, specific TGF-beta binding motif was identified in the TGF-beta binding 8-Cys repeats. Deletion of this motif in the 3(rd) 8-Cys repeat of LTBP-1 resulted in loss of TGF-beta*LAP binding ability, while its inclusion in non-TGF-beta binding 3(rd) 8-Cys repeat of LTBP-2 resulted in TGF-beta binding. Molecular modeling of the 8-Cys repeats revealed a hydrophobic interaction surface and lack of three stabilizing hydrogen bonds introduced by the TGF-beta binding motif necessary for the formation of the TGF-beta*LAP - 8-Cys repeat complex inside the cells.  相似文献   

3.
Human transforming growth factor beta 1 (TGF-beta 1) was purified as a latent high Mr complex from human platelets by a six-step procedure. Analysis by sodium dodecyl sulfate (SDS)-gel electrophoresis under reducing conditions revealed that the complex was composed of at least three components with apparent Mr values of 13,000, 40,000, and 125,000-160,000. The 13-kDa subunit was part of a disulfide-bonded dimer and was identified by amino acid sequencing as TGF-beta 1. The 40-kDa subunit was identified as the amino-terminal part of the TGF-beta 1 precursor lacking the hydrophobic signal sequence. Partial sequencing of the 125-160-kDa protein revealed that it is distinct from known proteins. The 40-kDa and the 125-160-kDa subunits are linked by disulfide bonds, forming a complex with an apparent Mr of 210,000 on SDS gels under nonreducing conditions. Experiments with partial reduction revealed that each complex contains two 40-kDa components linked by disulfide bonds; in addition, the dimer is disulfide-linked to one 125-160-kDa binding protein. TGF-beta 1 binds noncovalently to the 210-kDa complex, and in bound form, TGF-beta 1 is inactive. Incubations of the latent form of TGF-beta 1 at extreme pH values, in 0.02% SDS or in 8 M urea, lead to activation of TGF-beta 1, whereas the complex was resistant to treatment with 5 M NaCl or heat (3 min at 95 degrees C).  相似文献   

4.
Growth factors of the transforming growth factor-beta family are potent regulators of the extracellular matrix formation, in addition to their immunomodulatory and regulatory roles for cell growth. TGF-beta s are secreted from cells as latent complexes containing TGF-beta and its propeptide, LAP (latency-associated peptide). In most cells LAP is covalently linked to an additional protein, latent TGF-beta binding protein (LTBP), forming the large latent complex. LTBPs are required for efficient secretion and correct folding of TGF-beta s. The secreted large latent complexes associate covalently with the extracellular matrix via the N-termini of the LTBPs. LTBPs belong to the fibrillin-LTBP family of extracellular matrix proteins, which have a typical repeated domain structure consisting mostly of epidermal growth factor (EGF)-like repeats and characteristic eight cysteine (8-Cys) repeats. Currently four different LTBPs and two fibrillins have been identified. LTBPs contain multiple proteinase sensitive sites, providing means to solubilize the large latent complex from the extracellular matrix structures. LTBPs are now known to exist both as soluble molecules and in association with the extracellular matrix. An important consequence of this is LTBP-mediated deposition and targeting of latent, activatable TGF-beta into extracellular matrices and connective tissues. LTBPs have a dual function, they are required both for the secretion of the small latent TGF-beta complex as well as directing bound latent TGF-beta to extracellular matrix microfibrils. However, it is not known at present whether LTBPs are capable of forming microfibrils independently, or whether they are a part of the fibrillin-containing fibrils. Most LTBPs possess RGD-sequences, which may have a role in their interactions with the cell surface. At least LTBP-1 is chemotactic to smooth muscle cells, and is involved in vascular remodelling. Analyses of the expressed LTBPs have revealed considerable variations throughout the molecules, generated both by alternative splicing and utilization of multiple promoter regions. The significance of this structural diversity is mostly unclear at present.  相似文献   

5.
Chen Y  Dabovic B  Annes JP  Rifkin DB 《FEBS letters》2002,517(1-3):277-280
Latent transforming growth factor-beta (TGF-beta) binding protein (LTBP)-1, which is easily secreted, has been shown to enhance the secretion of TGF-beta. Here we show that another member of the LTBP family, LTBP-3, is not secreted by several cell types, but secretion occurs after coexpression with TGF-beta. The secretion of LTBP-3 requires complexing of LTBP-3 with Cys33 of the TGF-beta propeptide.  相似文献   

6.
Transforming growth factor beta 1 (TGF-beta 1) is a regulator of cell growth and differentiation. It is produced in various of cells and tissues as a biologically latent complex, whose significance is still unknown. We established a Chinese hamster ovary cells that produced recombinant human large latent TGF-beta 1. The growth factor was purified from serum-free conditioned medium of the cell line was purified to apparent homogeneity by four steps of column chromatography. The purified protein gave a single band with the apparent molecular weight of 210,000 on SDS-PAGE, and had four subunits, of 12.5, 40, 53, and 150-190 kDa. These components were identical to TGF-beta 1, the N-terminal remnant of pro-TGF-beta 1, pro-TGF-beta 1, and latent TGF-beta 1 binding protein, respectively. The purified growth factor had biological activity similar to that of the growth factor purified from human platelets. We prepared four monoclonal antibodies by immunization of mice with the recombinant protein. In western blotting, two of the antibodies bound to latent TGF-beta 1 binding protein. The two other antibodies reacted with the N-terminal remnant of pro-TGF-beta 1. Recombinant large latent TGF-beta 1 and its monoclonal antibodies could be used for detailed structural and functional studies of the large latent TGF-beta 1 complex.  相似文献   

7.
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine with important roles in inflammation, wound repair, and cancer. Cells secrete TGF-beta as a latent protein complex, consisting of disulfide-bonded homodimers of growth factor and latency-associated propeptide. Latency regulates extracellular TGF-beta action by controlling the levels of active growth factor available. We report here that active and latent TGF-beta were inactivated in vitro by reduction of the growth factor dimer under physiological conditions. We also demonstrate that the latency-associated propeptide has chaperone-like activity and partially protects TGF-beta from inactivation. TGF-beta inactivation occurred upon incubation with the physiological redox agents, cysteine, homocysteine, and reduced glutathione. Inactivation was temperature- and dose-dependent. While inactivation by physiological concentrations of redox agents was partial at 37 degrees C, active and latent TGF-beta were completely inactivated by raising the temperature in the presence of the redox agents. The mechanism of TGF-beta inactivation involved the generation of biologically inactive growth factor monomer and required the presence of free thiol groups, since thiol blockers protected TGF-beta from reduction. We conclude that non-enzymatic redox reactions may be involved in the regulation of extracellular TGF-beta activity. This might be of particular relevance in wound repair (e.g. in burns), as a mechanism protecting from excess TGF-beta activity, as well as in conditions involving redox dysregulation, such as reperfusion injury of the heart, Alzheimer's disease, and cancer.  相似文献   

8.
Transforming growth factor-betas (TGF-beta) are secreted as inactive complexes containing the TGF-beta, the TGF-beta propeptide, also called the latency-associated protein (LAP), and the latent TGF-beta binding protein (LTBP). Extracellular activation of this complex is a critical but incompletely understood step in TGF-beta regulation. We have investigated the role of LTBP in modulating TGF-beta generation by the integrin alphaVbeta6. We show that even though alphavbeta6 recognizes an RGD on LAP, LTBP-1 is required for alphaVbeta6-mediated latent TGF-beta activation. The domains of LTBP-1 necessary for activation include the TGF-beta propeptide-binding domain and a basic amino acid sequence (hinge domain) with ECM targeting properties. Our results demonstrate an LTBP-1 isoform-specific function in alphaVbeta6-mediated latent TGF-beta activation; LTBP-3 is unable to substitute for LTBP-1 in this assay. The results reveal a functional role for LTBP-1 in latent TGF-beta activation and suggest that activation of specific latent complexes is regulated by distinct mechanisms that may be determined by the LTBP isoform and its potential interaction with the matrix.  相似文献   

9.
Transforming growth factor-beta 1 (TGF-beta 1) is synthesized as latent complexes with high molecular weights. The large latent complex of TGF-beta 1 in platelets is composed of three components, i.e. the mature TGF-beta 1, which is non-covalently associated with a disulphide-bonded complex of the N-terminal remnant of the TGF-beta 1 precursor (TGF-beta 1-latency associated peptide) and the latent TGF-beta 1 binding protein (LTBP). The TGF-beta 1-latency associated peptide is sufficient for the latency of TGF-beta 1, whereas the functions of LTBP remain to be elucidated. In a human erythroleukemia cell line, HEL, the production of the latent form of TGF-beta 1 was induced more than 100-fold by phorbol 12-myristate 13-acetate. Analysis by Northern blotting revealed that both the TGF-beta 1 precursor and LTBP were induced in a coordinated fashion. Analysis by immunoprecipitation using antibodies against LTBP and the TGF-beta 1 precursor dimer revealed that LTBP has a molecular size of 205 kd under reducing conditions in this cell type, i.e. similar to that from cells transfected with cDNA for LTBP, but larger than the platelet form (125-160 kd). Limited tryptic digestion of LTBP in HEL cells and analysis by SDS-PAGE showed protein bands of similar sizes to those of platelet LTBP, suggesting that the difference in molecular sizes of LTBP involves cell-specific processing. The biosynthesis of the latent TGF-beta 1 was studied by pulse-chase analysis. LTBP became covalently associated with the TGF-beta 1 precursor within 15 min after synthesis in this cell line. Secretion of the large latent TGF-beta 1 complex was observed as early as 30 min after the synthesis of LTBP; at the same time, a free form of LTBP not bound to the TGF-beta 1 precursor was seen. In contrast, the TGF-beta 1 precursor remained inside the cells in an unprocessed form for a longer time period and the TGF-beta 1 precursor dimer without LTBP was secreted only very slowly. Furthermore, the results of partial tryptic digestion of this molecule suggested that it contained improper disulphide bonding. These results suggest that LTBP plays a critical role in the assembly and secretion of the latent TGF-beta 1.  相似文献   

10.
Latent TGF-beta binding proteins (LTBPs) mediate the targeting of latent TGF-beta complexes into ECM structures, which is important for TGF-beta activation and functions. LTBPs-1, -3 and -4 associate with and regulate the bioavailability of TGF-betas. We investigated whether LTBP-3 and -4 are associated with pericellular fibrillar structures of human lung fibroblast ECM, and which of their domains are important for this function. Immunoblotting analyses of isolated insoluble matrices as well as immunofluorescence analyses and confocal microscopy indicated that both LTBP-3 and -4 get assembled into the ECM. Interestingly, LTBP-4 was not detected until 7-10 days of culture and LTBP-3 until 14 days of culture. This was a major difference from the deposition kinetics of LTBP-1, which was detected already within 2 days of culture. Expression analyses by real time RT-PCR indicated that the slow appearance of LTBP-3 and -4 was due to the low expression levels soon after subculture. Recombinant N-terminal fragments of LTBP-3 and -4 bound readily to fibroblast ECM. The C-terminal domain of LTBP-4, but not of LTBP-3, also associated with the matrix structures. The levels of ECM-associated latent complexes of TGF-beta1 increased in parallel with the increased production and deposition of the LTBPs. The amount of active TGF-beta in the conditioned medium decreased during extended culture. Our results suggest that ECM is an important site of deposition also for LTBP-3 and -4 and that the temporal and spatial targeting of the TGF-beta complexes are associated with ECM maturation.  相似文献   

11.
Latent TGF-beta binding proteins (LTBPs) mediate the targeting of latent TGF-beta complexes into ECM structures, which is important for TGF-beta activation and functions. LTBPs-1, -3 and -4 associate with and regulate the bioavailability of TGF-betas. We investigated whether LTBP-3 and -4 are associated with pericellular fibrillar structures of human lung fibroblast ECM, and which of their domains are important for this function. Immunoblotting analyses of isolated insoluble matrices as well as immunofluorescence analyses and confocal microscopy indicated that both LTBP-3 and -4 get assembled into the ECM. Interestingly, LTBP-4 was not detected until 7-10 days of culture and LTBP-3 until 14 days of culture. This was a major difference from the deposition kinetics of LTBP-1, which was detected already within 2 days of culture. Expression analyses by real time RT-PCR indicated that the slow appearance of LTBP-3 and -4 was due to the low expression levels soon after subculture. Recombinant N-terminal fragments of LTBP-3 and -4 bound readily to fibroblast ECM. The C-terminal domain of LTBP-4, but not of LTBP-3, also associated with the matrix structures. The levels of ECM-associated latent complexes of TGF-beta1 increased in parallel with the increased production and deposition of the LTBPs. The amount of active TGF-beta in the conditioned medium decreased during extended culture. Our results suggest that ECM is an important site of deposition also for LTBP-3 and -4 and that the temporal and spatial targeting of the TGF-beta complexes are associated with ECM maturation.  相似文献   

12.
Macrophage inhibitory cytokine (MIC-1), a divergent member of the transforming growth factor-beta (TGF-beta) superfamily and activation associated cytokine, is secreted as a 28 kDa dimer. To understand its secretion, we examined its processing in MIC-1-transfected Chinese hamster ovary cells. Mature MIC-1 dimer arises post-endoplasmic reticulum (ER) by proteolytic cleavage of dimeric pro-MIC-1 precursor at a furin-like site. Unlike previously characterized TGF-beta superfamily members, MIC-1 dimers are also secreted in constructs lacking the propeptide. A clue to the function of the propeptide came from the observation that a range of proteasome inhibitors, including lactacystin and MG132, cause major increases in levels of undimerized pro-MIC-1 precursor. There was no effect of proteasome inhibitors on cells expressing mature MIC-1 without the propeptide, suggesting that the propeptide can signal misfolding of MIC-1, leading to proteasomal degradation. Deletion mutagenesis showed the N-terminal 28 amino acids of the propeptide are necessary for proteasomal degradation. This is the first demonstration, to our knowledge, of a quality control function in a propeptide domain of a secretory protein and represents an additional mechanism to ensure correct folding of proteins leaving the ER.  相似文献   

13.
《The Journal of cell biology》1993,120(4):995-1002
Transforming growth factor beta (TGF-beta) is released from cells in a latent form consisting of the mature growth factor associated with an aminoterminal propeptide and latent TGF-beta binding protein (LTBP). The endogenous activation of latent TGF-beta has been described in co- cultures of endothelial and smooth muscle cells. However, the mechanism of this activation remains unknown. Antibodies to native platelet LTBP and to a peptide fragment of LTBP inhibit in a dose-dependent manner the activation of latent TGF-beta normally observed when endothelial cells are cocultured with smooth muscle cells. Inhibition of latent TGF- beta activation was also observed when cells were co-cultured in the presence of an excess of free LTBP. These data represent the first demonstration of a function for the LTBP in the extracellular regulation of TGF-beta activity and indicate that LTBP participates in the activation of latent TGF-beta, perhaps by concentrating the latent growth factor on the cell surface where activation occurs.  相似文献   

14.
Latent transforming growth factor-beta-binding proteins (LTBPs) are extracellular matrix (ECM) glycoproteins that play a major role in storage of latent TGF-beta in the ECM and regulate its availability. We have previously identified fibronectin as a key molecule for incorporation of LTBP1 and TGF-beta into the ECM of osteoblasts and fibroblasts. Here we provide evidence that heparan sulfate proteoglycans may mediate binding between LTBP1 and fibronectin. We have localized critical domains in the N terminus of LTBP1 that are required for co-localization with fibronectin in osteoblast cultures and have identified heparin binding sites in the N terminus of LTBP1 between residues 345 and 487. Solid-phase binding assays suggest that LTBP1 does not bind directly to fibronectin but that the binding is indirect. Heparin coupled to bovine serum albumin (heparin-BSA) was able to mediate binding between fibronectin and LTBP1. Treatment of primary osteoblast cultures with heparin or heparin-BSA but not with chondroitin sulfate impaired LTBP1 deposition onto fibronectin without inhibiting expression of LTBP1. Inhibition of LTBP1 incorporation was accompanied by reduced incorporation of latent TGF-beta into the ECM, with increased amounts of soluble latent TGF-beta. Inhibition of attachment of glycosaminoglycans to the core proteins of proteoglycans by beta-d-xylosides also reduced incorporation of LTBP1 into the ECM. These studies suggest that heparan sulfate proteoglycans may play a critical role in regulating TGF-beta availability by controlling the deposition of LTBP1 into the ECM in association with fibronectin.  相似文献   

15.
We report the identification of cell surface glycoproteins that bind transforming growth factor-beta (TGF-beta) in an isoform-specific manner, and are distinct from TGF-beta receptors I and II or the TGF-beta binding proteoglycan beta-glycan. The novel TGF-beta binding proteins have been identified in various cell lines including fetal bovine heart endothelial cells and MG-63 human osteosarcoma cells. They include proteins of 90-100 and 180 kDa that preferentially bind TGF-beta 1 (KD 0.1-0.2 nM) and proteins of 60 and 140 kDa that preferentially bind TGF-beta 2 (KD 0.5-1 nM). The 180-kDa TGF-beta 1 binding protein and the 60- and 140-kDa TGF-beta 2 binding proteins can be released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C, suggesting that these proteins are attached to the plasma membrane through a phosphatidylinositol anchor. The expression of these three proteins as well as their sensitivity to phosphatidylinositol-specific phospholipase C is cell line-dependent. The 90-100-kDa TGF-beta 1 binding proteins are components of a 190-kDa disulfide-linked complex. The structural properties of these proteins and their high affinity and selectivity for different TGF-beta isoforms defines them as a novel class of cell surface TGF-beta binding proteins.  相似文献   

16.
TGF-beta occurs in a latent complex of high Mr. We report the cDNA cloning and an initial structural and functional characterization of a component of the large latent TGF-beta 1 complex, denoted TGF-beta 1 binding protein (TGF-beta 1-BP). Most of the sequence of fibroblast TGF-beta 1-BP is made up of cysteine-rich repeats of two different kinds; there are 16 EGF-like repeats and three repeats with a distant resemblance to EGF, but of a distinct type hitherto not found in any other protein. beta-hydroxylated asparagine residues were identified in two of the EGF-like repeats. TGF-beta 1-BP purified from human platelets is considerably smaller than the fibroblast form (125-160 kd vs. 170-190 kd), suggesting that there is alternative splicing of the TGF-beta 1-BP gene or that TGF-beta 1-BP undergoes cell-specific proteolysis. TGF-beta 1-BP was found not to bind and inactive TGF-beta 1; its role in the latent complex is discussed.  相似文献   

17.
The role of the latent TGF-beta binding protein (LTBP) is unclear. In cultures of fetal rat calvarial cells, which form mineralized bonelike nodules, both LTBP and the TGF-beta 1 precursor localized to large fibrillar structures in the extracellular matrix. The appearance of these fibrillar structures preceded the appearance of type I collagen fibers. Plasmin treatment abolished the fibrillar staining pattern for LTBP and released a complex containing both LTBP and TGF-beta. Antibodies and antisense oligonucleotides against LTBP inhibited the formation of mineralized bonelike nodules in long-term fetal rat calvarial cultures. Immunohistochemistry of fetal and adult rat bone confirmed a fibrillar staining pattern for LTBP in vivo. These findings, together with the known homology of LTBP to the fibrillin family of proteins, suggest a novel function for LTBP, in addition to its role in matrix storage of latent TGF-beta, as a structural matrix protein that may play a role in bone formation.  相似文献   

18.
The growth factor TGF-β is secreted in a latent complex consisting of three proteins: TGF-β, an inhibitor (latency-associated protein, LAP, which is derived from the TGF-β propeptide) and an ECM-binding protein (one of the latent TGF-β binding proteins, or LTBPs). LTBPs interact with fibrillins and other ECM components and thus function to localize latent TGF-β in the ECM. LAP contains an integrin-binding site (RGD), and several RGD-binding integrins are able to activate latent TGF-β through binding this site. Mutant mice defective in integrin-mediated activators, and humans and mice with fibrillin gene mutations, show the critical role of ECM and integrins in regulating TGF-β signaling.  相似文献   

19.
Latent TGFβ binding protein 1 (LTBP1) is a large extracellular protein that has been shown to bind covalently to the propeptide of TGFβ cytokines and form a large latent complex, which is then incapable of binding TGFβ receptors. LTBP1 has also been demonstrated to interact with a number of insoluble extracellular matrix components, such as fibrillin, which may play a role in TGFβ regulation. Here we present the backbone 1H, 13C and 15N assignments for two EGF domains of human LTBP1, and flanking regions, together forming a 12 kDa protein fragment at the C-terminus of LTBP1. This region is of particular interest as it is postulated to be involved in interactions with fibrillin microfibrils.  相似文献   

20.
Parathyroid hormone (PTH) regulates bone remodeling and calcium homeostasis by acting on osteoblasts. Recently, the gene expression profile changes in the rat PTH (1-34, 10(-8)M)-treated rat osteoblastic osteosarcoma cell line, UMR 106-01, using DNA microarray analysis showed that mRNA for LTBP-1, a latent transforming growth factor (TGF-beta)-binding protein is stimulated by PTH. Latent TGF-beta binding proteins (LTBPs) are required for the proper folding and secretion of TGF-beta, thus modifying the activity of TGF-beta, which is a local factor necessary for bone remodeling. We show here by real time RT-PCR that PTH-stimulated LTBP-1 mRNA expression in rat and mouse preosteoblastic cells. PTH also stimulated LTBP-1 mRNA expression in all stages of rat primary osteoblastic cells but extended expression was found in differentiating osteoblasts. PTH also stimulated TGF-beta1 mRNA expression in rat primary osteoblastic cells, indicating a link between systemic and local factors for intracellular signaling in osteoblasts. An additive effect on LTBP-1 mRNA expression was found when UMR 106-01 cells were treated with PTH and TGF-beta1 together. We further examined the signaling pathways responsible for PTH-stimulated LTBP-1 and TGF-beta1 mRNA expression in UMR 106-01 cells. The PTH stimulation of LTBP-1 and TGF-beta1 mRNA expression was dependent on the PKA and the MAPK (MEK and p38 MAPK) pathways, respectively in these cells, suggesting that PTH mediates its effects on osteoblasts by several intracellular signaling pathways. Overall, we demonstrate here that PTH stimulates LTBP-1 mRNA expression in osteoblastic cells and this is PKA-dependent. This event may be important for PTH action via TGF-beta in bone remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号