首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A gene encoding phytoene desaturase (crtI) in the carotenoid biosynthetic pathway of Sphingomonas elodea ATCC 31461, an industrial gellan gum-producing strain, was cloned and identified. This gene is predicted to encode a 492-amino acid protein with significant homology to the phytoene desaturase of other carotenogenic organisms. Knockout of crtI gene blocked yellow carotenoid pigment synthesis and resulted in the accumulation of colorless phytoene, confirming that it encodes phytoene desaturase. Further research indicates that the yield of gellan gum production by crtI gene knockout mutants is almost the same as that by the wild-type strain. In addition, a recovery method based on the colorless fermentation broth of the crtI gene knockout mutant was investigated. Compared to the volume of alcohol for the parent strain, much less alcohol (30%) is required in this recovery process; thus, the costs of downstream purification of gellan gum can be substantially reduced.  相似文献   

3.
4.
Maize white seedling 3 (w3) has been used to study carotenoid deficiency for almost 100 years, although the molecular basis of the mutation has remained unknown. Here we show that the w3 phenotype is caused by disruption of the maize gene for homogentisate solanesyl transferase (HST), which catalyzes the first and committed step in plastoquinone‐9 (PQ‐9) biosynthesis in the plastid. The resulting PQ‐9 deficiency prohibits photosynthetic electron transfer and eliminates PQ‐9 as an oxidant in the enzymatic desaturation of phytoene during carotenoid synthesis. As a result, light‐grown w3 seedlings are albino, deficient in colored carotenoids and accumulate high levels of phytoene. However, despite the absence of PQ‐9 for phytoene desaturation, dark‐grown w3 seedlings can produce abscisic acid (ABA) and homozygous w3 kernels accumulate sufficient carotenoids to generate ABA needed for seed maturation. The presence of ABA and low levels of carotenoids in w3 nulls indicates that phytoene desaturase is able to use an alternate oxidant cofactor, albeit less efficiently than PQ‐9. The observation that tocopherols and tocotrienols are modestly affected in w3 embryos and unaffected in w3 endosperm indicates that, unlike leaves, grain tissues deficient in PQ‐9 are not subject to severe photo‐oxidative stress. In addition to identifying the molecular basis for the maize w3 mutant, we: (1) show that low levels of phytoene desaturation can occur in w3 seedlings in the absence of PQ‐9; and (2) demonstrate that PQ‐9 and carotenoids are not required for vitamin E accumulation.  相似文献   

5.
6.
Previous studies have identified a set of highly phosphorylated proteins of 23–25 kDa accumulated during normal embryogenesis of Zea mays L. and which disappear in early germination. They can be induced precociously in embryos by abscisic acid (ABA) treatment. Here the synthesis and accumulation of this group of proteins and their corresponding mRNAs were examined in ABA-deficient viviparous embryos at different developmental stages whether treated or not with ABA, and in water-stressed leaves of both wild-type and viviparous mutants.During embryogenesis and precocious germination of viviparous embryos the pattern of expression of the 23–25 kDa proteins and mRNAs closely resembles that found in non-mutant embryo development. They are also induced in young viviparous embryos by ABA treatment. In contrast, leaves of ABA-deficient mutants fail to accumulate mRNA in water stress, yet do respond to applied ABA. In water-stressed leaves of wild type plants the mRNAs are induced and translated into 4 proteins with a molecular weight and isoelectric point identical to those found in embryos.These results indicate that the 23–25 kDa protein set is a new member of the recently described class or proteins involved in generalized plant ABA responses.The different pattern of expression for the ABA-regulated 23–25 kDa proteins and mRNAs found in embryo and in vegetative tissues of viviparous mutants is discussed.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.  相似文献   

15.
The phytoene desaturase CrtI from Rubrivivax gelatinosus catalyzes simultaneously a three- and four-step desaturation producing both neurosporene and lycopene. These carotenes are intermediates for the synthesis of spheroidene and spirilloxanthin, respectively. Two different mutation libraries for the crtI gene from R. gelatinosus were constructed to screen for modified enzymes which synthesize almost exclusively either neurosporene or lycopene. The resulting mutants carried between one and four amino acid exchanges and at least one of them affected the secondary protein structure by shortening or extending one of the helices. A prominent amino acid which was exchanged in the neurosporene or lycopene-forming desaturase was leucine 208. Enzyme kinetic studies were carried out with the L208 modified desaturase and the specificities for phytoene and neurosporene as substrates determined. Higher and lower values correlate well with the higher or lower potential for the synthesis of lycopene from neurosporene. TopPred analysis of the mutations of L208 indicated that the location is in a highly hydrophobic membrane-integrated region which is a good candidate for the substrate-binding site of the desaturase.  相似文献   

16.
A DNA fragment which has been isolated previously from an Anabaena DNA expression library was subcloned. The corresponding protein was overexpressed in Escherichia coli. The recombinant enzyme was fully active in converting -carotene into lycopene in vitro with neurosporene as an intermediate. A smaller fragment which still contained the active enzyme was sequenced. An open reading frame of 1497 bp was found coding for a protein consisting of 499 amino acids with the calculated molecular weight of 56 740. In a computer search of nucleotide sequences contained in the EMBL nucleotide sequence library, all the best-fitting comparisons were carotenoid desaturases. The highest similarity was found with the crtI phytoene desaturase genes of bacteria and the al-1 gene from Neurospora crassa. A much lower similarity was found with the pds genes coding for phytoene desaturase from cyanobacteria and higher plants. It is shown in protein similarity plots that the amino acid similarity of -carotene desaturase to the latter is mainly limited to the N terminus of the polypeptides. In contrast, the protein similarity plots and a comparison of a conserved region clearly demonstrate that there is a strong relationship between -carotene desaturase and the phytoene desaturases from various bacteria and fungi. Therefore we propose that the -carotene desaturase gene is homologous to the crt I phytoene desaturase genes of bacteria and fungi.  相似文献   

17.
S. J. Neill  R. Horgan  A. F. Rees 《Planta》1987,171(3):358-364
Seed development was investigated in kernels of developing wild-type and viviparous (vp-1) Zea mays L. Embryos and endosperm of wild-type kernels began to dehydrate at approx. 35 d after pollination (DAP); viviparous embryos did not desiccate but accumulated fresh weight via coleoptile growth in the caryopses. Concentrations of endogenous abscisic acid (ABA) in the embryo were relatively high early in development, being approx. 150 ng·g-1 fresh weight at 20 DAP. The ABA content declined thereafter, falling to approx. 50 ng·g-1 at 30 DAP. Endosperm ABA content was always low, being less than 20 ng·g-1. There were no differences between wild-type and vp-1 tissues. Immature kernels did not germinate when removed from the ear until late in development. The ability to germinate was correlated with decreasing moisture content in the endosperm at the time of removal; premature drying of immature kernels resulted in greatly increased germination following imbibition. Excised embryos germinated precociously when removed from the endosperm as early as 25 DAP. Such germination could be prevented by treatment with 10-5 M ABA or by lowering the solute potential (s) of the medium with 0.3 M mannitol. Treatment of excised embryos with ABA led to internal ABA concentrations comparable to those in embryos in which germination was inhibited in situ. Mannitol treatment did not have this effect, although water-deficit stress of excised embryos resulted in substantial ABA production. Germinated vp-1 embryos were less sensitive to growth inhibition by ABA or mannitol than germinating wild-type embryos. The vp-1 seedlings were not wilty and their transpiration rates were reduced in response to ABA or water shortage.Abbreviations and symbols ABA abscisic acid - DAP days after pollination - FW fresh weight - vp-1 viviparous genotype - s solute potential  相似文献   

18.
19.
20.
To determine whether abscisic acid (ABA) accumulation in endosperms of water-limited maize (Zea mays L.) plants is from synthesis in maternal plant organs or from intraendosperm synthesis, plants heterozygous for viviparous (vp) genes were self-pollinated to create endosperm genotypes capable (+/−/−; +/+/−; +/+/+) or incapable (−/−/−) of carotenoid and ABA synthesis. The mutants vp2, vp5, and vp7, each in W22 inbred background, were utilized. Both in wild-type endosperms capable of ABA synthesis and in mutants incapable of ABA synthesis, ABA concentrations at 15 days after pollination were substantially increased in response to plant water deficit. We conclude that ABA synthesis in maternal organs was the source of ABA that accumulated in endosperms in response to plant water deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号