首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oncogenic activation in primary murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the p53 tumor suppressor pathway. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras with p53 produced an irreversible cell cycle arrest that displayed features of cellular senescence. Introduction of a conditional murine p53 allele (p53val135) into double p53/p21-null mouse embryonic fibroblasts showed that p21waf1 was not required for this effect, since p53-/-;p21-/- double-null cells undergo terminal growth arrest with features of senescence following coexpression of oncogenic Ras and p53. Our results indicate that oncogenic activation of the Ras pathway in murine fibroblasts converts p53 into a senescence inducer through a p21waf1-independent mechanism.  相似文献   

2.
Oncogenic ras and p53 cooperate to induce cellular senescence   总被引:14,自引:0,他引:14       下载免费PDF全文
Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and senescence in cells expressing p53, oncogenic Ras, or both gene products. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras or activated mek1 with p53 enhanced both p53 levels and activity relative to that observed for p53 alone and produced an irreversible cell cycle arrest that displayed features of cellular senescence. p19(ARF) was required for this effect, since p53(-/-) ARF(-/-) double-null cells were unable to undergo senescence following coexpression of oncogenic Ras and p53. Although the levels of exogenous p53 achieved in ARF-null cells were relatively low, the stabilizing effects of p19(ARF) on p53 could not explain the cooperation between oncogenic Ras and p53 in promoting senescence. Hence, enforced p53 expression without oncogenic ras in p53(-/-) mdm2(-/-) double-null cells produced extremely high p53 levels but did not induce senescence. Taken together, our results indicate that oncogenic activation of the MAP kinase pathway in murine fibroblasts converts p53 into a senescence inducer through both quantitative and qualitative mechanisms.  相似文献   

3.
Several studies have shown that forced expression of oncogenic H-ras can induce a senescence-like permanent growth arrest in normal cells. Here we report that expression of oncogenic H-ras in human osteosarcoma U2OS cells also resulted in a senescence-like flat and enlarged cell morphology and permanent growth arrest. In contrast to normal human fibroblasts, U2OS cells were arrested independently of the p16 and ARF tumor suppressors. Treatment with a MEK inhibitor or a p38MAPK inhibitor interrupted oncogenic H-ras-induced growth arrest in U2OS cells, suggesting that activation of MAPK pathways is important. To further determine whether this process is unique to oncogenic H-ras signaling, we examined the effect of oncogenic K-ras on normal cells and human osteosarcoma cells. Similar to oncogenic H-ras, oncogenic K-ras also induced senescence in normal fibroblasts, while transforming immortalized mouse fibroblasts. However, in contrast to oncogenic H-ras, oncogenic K-ras failed to induce a permanent growth arrest in osteosarcoma U2OS cells. Additionally, cells transduced with oncogenic K-ras exhibited distinguishable cellular changes compared to those transduced with oncogenic H-ras. In summary, we report for the first time that oncogenic H-ras signaling can trigger a senescence-like growth arrest in tumor cells, independent of the p16 and ARF tumor suppressors. This result suggests that tumor cells may harbor a senescence-like program that can be activated by ras signaling. Moreover, our study uncovered a cell type-dependent differential response to oncogenic K-ras, as compared to oncogenic H-ras.  相似文献   

4.
The induction of senescence, an irreversible growth arrest, in cancer cells is regarded as a mean to halt tumor progression. The phytoalexin resveratrol (RV) is known to possess a variety of cancer-preventive, -therapeutic, and -chemosensitizing properties. We report here that chronic treatment with RV in a subapoptotic concentration induces senescence-like growth arrest in tumor cells. In contrast to the widely accepted antioxidant property of RV, we demonstrate that one causative stimulus for senescence induction by chronic RV is an increased level of reactive oxygen species (ROS). The ROS formed upon RV exposure include hydrogen peroxide and superoxide and originate largely from mitochondria. Consistently, co-incubation with the antioxidant N-acetyl cysteine interfered with RV-mediated reactivation of the senescence program. Molecular mediators on the way from increased ROS levels to the observed growth arrest include p38 MAPK, p53, and p21. Moreover, we provide evidence that RV-initiated replication stress, apparent by activation of the ataxia telangiectasia-mutated kinase pathway, is associated with increased ROS levels and senescence induction. This is the first report linking cell cycle effects with a pro-oxidant and pro-senescent effect of RV in cancer cells.  相似文献   

5.
6.
Normal human fibroblasts have been shown to undergo a p16(Ink4a)-associated senescence-like growth arrest in response to sustained activation of the Ras/Raf/MEK/ERK pathway. We noted a similar p16(Ink4a)-associated, senescence-like arrest in normal human astrocytes in response to expression of a conditional form of Raf-1. While HPV16 E7-mediated functional inactivation of the p16(Ink4a)/pRb pathway in astrocytes blocked the p16(Ink4a)-associated growth arrest in response to activation of Raf-1, it also revealed a second p21(Cip1)-associated, senescence-associated, beta-galactosidase-independent growth arrest pathway. Importantly, the p21(Cip1)-associated pathway was present not only in normal astrocytes but also in p53-, p14(ARF)-, and p16(Ink4a)/pRb-deficient high grade glioma cells that lacked the p16(Ink4a)-dependent arrest mechanism. These results suggest that normal human cells have redundant arrest pathways, which can be activated by Raf-1, and that even tumors that have dismantled p16(Ink4a)-dependent growth arrest pathways are potentially regulated by a second p21(Cip1)-dependent growth arrest pathway.  相似文献   

7.
8.
Reduction-of-function mutations in components of the insulin/insulin-like growth factor-1/Akt pathway have been shown to extend the lifespan in organisms ranging from yeast to mice. It has also been reported that activation of Akt induces proliferation and survival of mammalian cells, thereby promoting tumorigenesis. We have recently shown that Akt activity increases with cellular senescence and that inhibition of Akt extends the lifespan of primary cultured human endothelial cells. Constitutive activation of Akt promotes senescence-like arrest of cell growth via a p53/p21-dependent pathway, leading to endothelial dysfunction. This novel role of Akt in regulating the cellular lifespan may contribute to various human diseases including atherosclerosis and diabetes mellitus.  相似文献   

9.
Activated Ras signaling can induce a permanent growth arrest in osteosarcoma cells. Here, we report that a senescence-like growth inhibition is also achieved in human carcinoma cells upon the transduction of H-Ras(V12). Ras-induced tumor senescence can be recapitulated by the transduction of activated, but not wild-type, MEK. The ability for H-Ras(V12) to suppress tumor cell growth is drastically compromised in cells that harbor endogenous activating ras mutations. Notably, growth inhibition of tumor cells containing ras mutations can be achieved through the introduction of activated MEK. Tumor senescence induced by Ras signaling can occur in the absence of p16 or Rb and is not interrupted by the inactivation of Rb, p107, or p130 via short hairpin RNA or the transduction with HPV16 E7. In contrast, inactivation of p21 via short hairpin RNA disrupts Ras-induced tumor senescence. In summary, this study uncovers a senescence-like program activated by Ras signaling to inhibit cancer cell growth. This program appears to be intact in cancer cells that do not harbor ras mutations. Moreover, cancer cells that carry ras mutations remain susceptible to tumor senescence induced by activated MEK. These novel findings can potentially lead to the development of innovative cancer intervention.  相似文献   

10.
Reduction-of-function mutations in components of the insulin/insulin-like growth factor-1/Akt pathway have been shown to extend the lifespan in organisms ranging from yeast to mice. It has also been reported that activation of Akt induces proliferation and survival of mammalian cells, thereby promoting tumorigenesis. We have recently shown that Akt activity increases with cellular senescence and that inhibition of Akt extends the lifespan of primary cultured human endothelial cells. Constitutive activation of Akt promotes senescence-like arrest of cell growth via a p53/p21-dependent pathway, leading to endothelial dysfunction. This novel role of Akt in regulating the cellular lifespan may contribute to various human diseases including atherosclerosis and diabetes mellitus.  相似文献   

11.
The cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1/Sdi1) was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53-negative cancer cells. N-acetyl-L-cysteine, an ROS inhibitor, rescued p21-induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16(Ink4a), a CDK4- and CDK6-specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down-regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16.  相似文献   

12.
Overexpression of an activated ras gene in the rat embryo fibroblast line REF52 results in growth arrest at either the G1/S or G2/M boundary of the cell cycle. Both the DNA tumor virus proteins simian virus 40 large T antigen and adenovirus 5 E1a are able to rescue ras induced lethality and cooperate with ras to fully transform REF52 cells. In this report, we present evidence that the wild-type activity of the tumor suppressor gene p53 is involved in the negative growth regulation of this model system. p53 genes encoding either a p53Val-135 or p53Pro-193 mutation express a highly stable p53 protein with a conformation-dependent loss of wild-type activity and the ability to eliminate any endogenous wild-type p53 activity in a dominant negative manner. In cotransfection assays, these mutant p53 genes are able to rescue REF52 cells from ras-induced growth arrest, resulting in established cell lines which express elevated levels of the ras oncoprotein and show morphological transformation. Full transformation, as assayed by tumor formation in nude mice, is found only in the p53Pro-193-plus-ras transfectants. These cells express higher levels of the ras protein than do the p53Val-135-plus-ras-transfected cells. Transfection of REF52 cells with ras alone or a full-length genomic wild-type p53 plus ras results in growth arrest and lethality. Therefore, the selective event for p53 inactivation or loss during tumor progression may be to overcome a cell cycle restriction induced by oncogene overexpression (ras). These results suggest that a normal function of p53 may be to mediate negative growth regulation in response to ras or other proliferative inducing signals.  相似文献   

13.
Bleomycin is an anti-cancer drug that induces both apoptosis and senescence, two processes thought to involve caveolin-1. Here we investigate the role of caveolin-1 in bleomycin-induced senescence. We show that bleomycin-treated A549 cells exhibit: senescence-like cell morphology; a senescence-associated increase in SA-beta-galactosidase activity; cell cycle arrest; and upregulation of p53 and p21. As predicted, we find that caveolin-1 amount increases in response to bleomycin-treatment and that modulation of caveolin-1 affects p21 and p53 levels, cell cycling, and senescence (SA-beta-galactosidase activity). Interestingly, senescence-associated cell cycle arrest via p53 and p21 and SA-beta-galactosidase activity is reduced in young A549 cells when short hairpin RNA specific for caveolin-1 was applied before bleomycin-treatment. Our results support the hypothesis that downregulation of caveolin-1 expression affects bleomycin-induced cell cycle arrest and subsequent cellular senescence that is driven by p53 and p21.  相似文献   

14.
15.
Recent data has indicated that exogenous nitric oxide (NO) has the ability to decrease endogenous NO production by inhibiting the enzyme responsible for its generation, NO synthase (NOS). Our previous studies have indicated that increased generation of reactive oxygen species (ROS) play an important role in the inhibitory event. However, the mechanisms for these effects remain unclear. Previous studies have suggested that NO can activate p21ras. Thus, the objective of this study was to determine whether NO-mediated activation of p21ras is involved in the inhibitory process, and to further elucidate the involvement of ROS. Using primary cultures of ovine pulmonary arterial endothelial cells we demonstrated that the NO donor SpermineNONOate, increased p21ras activity by 2.3-fold compared to untreated cells, and that the farnesyl-transferase inhibitor, alpha-hydroxyfarnesylphosphonic acid, reduced p21ras activity and significantly reduced inhibition of eNOS. The overexpression of p21ras increased, while the overexpression of an NO unresponsive mutant of p21ras (p21ras C118S) reduced, the inhibition of eNOS by NO. Further, we identified an increase in the level of superoxide and peroxynitrite in endothelial cells exposed to NO that was reduced by p21ras C118S transient transfection. Conversely, levels of superoxide and peroxynitrite could be increased by the over expression of wild type p21ras. Similarly, eNOS nitration induced by NO exposure was reduced by p21ras C118S transient transfection, and increased by the overexpression of wild-type p21ras. Finally, results also demonstrated that eNOS itself was a significant producer of superoxide, and that this appeared to be related to a p21ras-dependent increase in phosphorylation of Ser1177. Our results implicate a signaling pathway involving p21ras activation, superoxide generation, and peroxynitrite formation as being important in the NO-mediated inhibition of eNOS.  相似文献   

16.
Cellular senescence has been implicated in normal aging, tissue homeostasis, and tumor suppression. Although p53 has been shown to be a central mediator of cellular senescence, the signaling pathway by which it induces senescence remains incompletely understood. In this study, we have shown that both Akt and p21 are required to induce cellular senescence in response to p53 expression. In a p53‐induced senescence model, we found that Akt activation was essential for inducing a cellular senescence phenotype. Surprisingly, Akt inhibition did not abolish p53‐induced cell cycle arrest, but it suppressed the increase in intracellular reactive oxygen species (ROS) levels. The results of the cell cycle and morphological analysis suggest that p53 induced quiescence, not senescence, following Akt inhibition. Conversely, the inhibition of p21 induction abolished cell cycle arrest but did not affect the p53‐induced increase in ROS levels. Additionally, p21 and Akt separately controlled cell cycle arrest and ROS levels, respectively, during H‐Ras‐induced senescence in human normal fibroblasts. The mechanistic analysis revealed that Akt increased ROS levels through NOX4 induction, and increased Akt‐dependent NF‐κB binding to the NOX4 promoter is responsible for NOX4 induction upon p53 expression. We further showed that Akt activation upon p53 expression is mediated by mammalian target of rapamycin complex 2. In addition, p53‐mediated IL6 and IL8 induction was abrogated by Akt inhibition, suggesting that Akt activation is also required for the senescence‐associated secretory phenotype. Collectively, these results suggest that p53 simultaneously controls multiple pathways to induce cellular senescence through p21 and Akt.  相似文献   

17.
18.
Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.  相似文献   

19.
Costunolide (C(15)H(20)O(2)) is a sesquiterpene lactone that was isolated from many herbal medicines and it has diverse effects according to previous reports. However, the anti-cancer effects and the mechanism of actions are still unknown in breast cancer. In this study, we first observed that costunolide inhibits cell growth in a dose-and time-dependent manner. To examine the mechanism by which costunolide inhibits cell growth, we checked the effect of costunolide on apoptosis and the cell cycle. Costunolide induced apoptosis through the extrinsic pathway, including the activation of Fas, caspase-8, caspase-3, and degradation of PARP. However, did not have the same effect on the intrinsic pathway as revealed by analysis of mitochondrial membrane potential (Δψm) with JC-1 dye and expression of Bcl2 and Bax proteins level. Furthermore, costunolide induced cell cycle arrest in the G2/M phase via decrease in Cdc2, cyclin B1 and increase in p21WAF1 expression, independent of p53 pathway in p53-mutant MDA-MB-231 cells and increases Cdc2-p21WAF1 binding. In addition, costunolide had a slight induced effect on ROS generation. Among the mechanisms of p21WAF1 induction examined, costunolide-induced increase in p21WAF1 expression was related with protein stability and ROS generation. Through this study we confirm that costunolide induces G2/M cell cycle arrest and apoptotic cell death via extrinsic pathway in MDA-MB-231 cells suggesting that it could be a promising anticancer drug especially for ER-negative breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号