首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Nb2 T lymphoma is unique in that these lymphocytes proliferate in response to prolactin as well as in response to interleukin-2. In this study, we have examined the responsiveness of the adenylate cyclase system in Nb2 cells and the role of this signaling system in regulating proliferation and protein phosphorylation. An analog of cAMP inhibited prolactin-stimulated proliferation and blocked a prolactin-induced decrease in protein phosphorylation. Forskolin, a potent activator of adenylate cyclase in T lymphocytes, did not elevate cAMP levels in Nb2 cells and was not an effective inhibitor of prolactin-induced proliferation. In fact, one preparation of forskolin stimulated proliferation of quiescent Nb2 cells. Like forskolin, prostaglandin E2 did not stimulate cAMP production in Nb2 cells even though it increased cAMP in a preparation of rat peripheral blood lymphocytes. Cholera toxin appeared to ADP-ribosylate a stimulatory guanine nucleotide-binding protein in Nb2 cells, but the toxin did not increase intracellular levels of cAMP nor was it a potent anti-mitogenic agent. Pertussis toxin, an agent that can increase cAMP production through suppression of the inhibitory guanine nucleotide-binding protein, exerted only minor anti-proliferative actions on prolactin-stimulated Nb2 cells. These data suggest that cAMP inhibits Nb2 cell proliferation and prolactin-induced changes in protein phosphorylation but that the adenylate cyclase system in our clone of Nb2 cells responds poorly to agents that normally increase cAMP.  相似文献   

2.
Three monoclonal antibodies (mAbs) (T6, U5, and U6) against prolactin (PRL) receptors in rat liver were studied in the rat lymphoma lactogen-dependent (Nb2-11C) and autonomous (Nb2-SP) cell lines. The mAbs had strong affinity for lactogen receptors (Ka = 12-14 nM-1), similar to that of human growth hormone (hGH) which is a lactogenic hormone. T6 and hGH competed for the same binding site, while U5 and U6 interacted with another epitope. The 125I-hGH-receptor complex could be immunoprecipitated by either U5 or U6, but not by T6. Affinity labeling and immunoblotting revealed that hGH and U6 bind to a protein of 63-65 kDa. T6, U5, and U6 were mitogenic in Nb2-11C cells but their respective potencies were 185-, 70-, and 4700-fold lower than that of hGH. Anti-mouse IgG enhanced the mitogenic effect of all three mAbs and almost completely abolished the differences between them, although their mitogenic activity was still 60-120-fold lower than hGH. Des-13-hGH, a competitive antagonist of hGH which hardly effected the binding of 125I-U5, inhibited the U5-stimulated proliferation of Nb2-11C cells in a noncompetitive manner, indicating that simultaneous binding of both ligands fixed the receptor in a nonactive conformation. A Fab fragment of T6 was not mitogenic, and inhibited the hGH-induced mitogenesis in a competitive manner, but its mitogenicity could be restored by anti-mouse IgG. We suggest that the dimerization or oligomerization of the lactogen receptor in Nb2-11C cells is an obligatory step in the transduction of the mitogenic signal. It may be induced by binding of the mAb to a site, which can be either identical or may even be distinct from that which binds the lactogenic hormone.  相似文献   

3.
A chimeric bovine GH (amino acids Met-Asp-Gln-greater than 1-23) and human GH (hGH) (amino acids 24-191) plasmid was constructed and expressed in Escherichia coli. The purified protein (chimeric GH) exhibited a 2-3 order of magnitude lower affinity toward lactogenic receptors in Nb2 lymphoma cells, microsomal fractions from bovine mammary gland and male rat liver. The affinity towards somatogenic receptors in IM-9 human lymphocytes and male rat liver was decreased to a much lesser degree. This diminished affinity towards lactogenic receptors was accompanied by a parallel decrease in the ability of the chimeric GH to stimulate proliferation of Nb2-11C lymphoma cells and the lipogenesis in bovine mammary gland. This implies that occupation of the respective receptors by either chimeric GH or hGH leads to identical postreceptoral effects. The chimeric GH was also capable of down-regulating the lactogenic receptors in Nb2 lymphoma cells and was recognized by three anti-hGH monoclonal antibodies. These and previously published results indicate that the N-terminal part of hGH is essential for the high affinity binding to lactogenic receptors and subsequent biological effect. Removal or replacement by a corresponding part of bovine GH converts the hormone, respectively to weak antagonist or agonists. Analysis of our data, based on hydropathy index leads us to suggest that the high affinity binding site of the hGH towards lactogenic receptors is mainly confined to amino acids nos. 8-18.  相似文献   

4.
The effect of growth hormone on the proliferation of human Th cell clones   总被引:2,自引:0,他引:2  
The effects of human growth hormone (hGH) on human Th cell clones were examined. Both 20K and 22K hGH stimulated the proliferation of Th2 and Th0 cells in the presence of mite antigen, whereas they did not stimulate the proliferation of Thl cells. Because the effect of 20K hGH was almost the same as that of 22KhGH, it was suggested that the action of hGH was not mediated through prolactin receptor but through hGH receptors. The application of growth hormone binding protein (GHBP) inhibited the cell growth of Th1 clones. In Th2 and Th0 cells GHBP inhibited the hGH-stimulated cell proliferation. However, GHBP alone did not affect the proliferation of Th2 and Th0 cells. hGH was detected in the supernatant of Th1 clones in the presence of mite antigen but it was not detected in Th2 clones. hGH was detected in one out of 4 batches of Th0 clones. These data indicated that hGH was secreted from Thl clones, and that Th0 clones possessed characteristics of both Th2 and Th0 clones.  相似文献   

5.
PAL31, a nuclear protein required for progression to the S phase   总被引:1,自引:0,他引:1  
PAL31 is a nuclear protein expressed by various cell types. In the present study, the expression and function of PAL31 were examined in the cytokine-regulated growth of T and B cell lines. Treatment of the cells with mitogens [ovine PRL, recombinant rat placental lactogen-I (PL-I) and human IL-3] caused a dose-dependent increase in the expression of PAL31 mRNA in the PRL-dependent cell line Nb2, and IL-3 dependent cell line BaF3. A time-course study on synchronized Nb2 cells revealed that the expression of PAL31 is specific to the late G1 and S phases. Immunocytological studies revealed that PAL31 accumulates in the nuclei at the S phase. Furthermore, the antisense oligonucleotide for PAL31 severely inhibited the proliferation of Nb2 cells by inhibiting cells progressing to the S phase. Thus, PAL31 is a nuclear protein associated with cell cycle progression.  相似文献   

6.
Rat lymphoma cells (Nb2) are exquisitely sensitive to lactogenic hormones and are an ideal system to study receptor-mediated signal transduction. The effect of human growth hormone (hGH) on macromolecular synthesis, intracellular cAMP concentrations and protein phosphorylation was investigated in Nb2 cells maintained in serum-free medium. hGH stimulated the incorporation of radiolabeled precursors into protein, RNA and DNA in a time-dependent manner. The concentration of hGH inducing half-maximal DNA synthesis was 11 pM, indicating that Nb2 cells cultured in serum-free medium maintain the same sensitivity to lactogen as cells in horse serum-containing medium. hGH over a period of 4 h had no effect on intracellular cAMP regardless of the presence or absence of isobutylmethylxanthine (IBMX). IBMX (250 microM), increased intracellular cAMP levels 2-fold indicating that the cAMP assay was sufficiently sensitive to detect relatively small changes in intracellular cAMP. Cyclic AMP had no effect on protein phosphorylation. However, hGH, prolactin and placental lactogen enhanced phosphorylation of many protein targets, as well as that of a specific protein (Mr = 29,000). Rat growth hormone, which is not mitogenic, had no effect on protein phosphorylation. These results suggest that lactogen-mediated Nb2 mitogenesis does not involve modulation of intracellular cAMP concentration and that cAMP-independent protein phosphorylation may play a role.  相似文献   

7.
The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to factor-deprived cells. GM-CSF-induced proliferation of MO7 cells was found to be inhibited by two activators of protein kinase C, phorbol 12-myristate 13-acetate (PMA) and bryostatin-1. PMA did not affect surface expression or affinity of the GM-CSF receptor but significantly inhibited GM-CSF- or IL-3-induced tyrosine phosphorylation of p93 and p70. In contrast, PMA augmented GM-CSF-induced tyrosine phosphorylation of another protein, p42. Pretreatment of cells with sodium orthovanadate to inhibit protein tyrosine phosphatases (PTPase) partially reversed the inhibitory effects of PMA. These results suggest that one aspect of GM-CSF and IL-3 signal transduction, protein tyrosine phosphorylation, can be inhibited by a mechanism which does not involve receptor down-regulation, and may involve either receptor down-regulation, and may involve either inhibition of a receptor-activated tyrosine kinase, activation of a protein tyrosine phosphatase, or both. This mechanism could be important in exerting control of proliferation of some types of hematopoietic cells.  相似文献   

8.
Interleukin-2 (IL-2) is a requisite factor for growth and proliferation of IL-2-dependent T cells. At present, the mechanism by which the high-affinity IL-2-IL-2 receptor interaction transmits a mitogenic signal to the cellular interior remains unclear. In this report we have used three murine T cell clones to demonstrate that IL-2 stimulates rapid tyrosine phosphorylation of several proteins. Two of these clones, CTLL-2 and CT6, exhibit a cytotoxic T cell phenotype, while the third, HT-2, was derived from a helper T cell line. All three T cell clones proliferated in response to IL-2 stimulation, but HT-2 cells also proliferated in response to interleukin-4 (IL-4). We comparatively examined the effects of IL-2 and IL-4 on protein tyrosine phosphorylation in these cells by immunoaffinity purification of phosphotyrosyl substrates with an anti-phosphotyrosine monoclonal antibody. Stimulation with concentrations of IL-2 resulting in maximal (10-30 U/ml) or sub-maximal (1-5 U/ml) proliferation caused the rapid tyrosine phosphorylation of 97 and 57 kDa proteins in all three cell lines. The 97 kDa protein was localized in the cytosol, while the 57 kDa protein was detected in both cytosolic and crude membrane fractions. IL-2-dependent tyrosine phosphorylation of an 86 kDa cytosolic protein was observed only in CT6 cells. Tyrosine phosphorylation of 22, 23 and 200 kDa proteins was also observed, but only in the cytotoxic T cell clones. Phosphoamino acid analyses revealed that the 97, 86 and 57 kDa proteins contained phosphotyrosine and phosphoserine residues. Concentrations of IL-2 below the threshold concentration for induction of a proliferative response correspondingly failed to stimulate protein tyrosine phosphorylation. In contrast, growth stimulation of HT-2 cells by IL-4 was not preceded by early changes in protein tyrosine phosphorylation, suggesting that protein tyrosine phosphorylation may not be essential for the induction of IL-4-dependent cell-cycle progression. These results demonstrate that high-affinity IL-2 receptors are coupled to tyrosine kinase activity(s) in T cells. However, the failure of IL-4 to stimulate protein tyrosine phosphorylation in the same cells indicates that enhanced protein tyrosine phosphorylation may not be requisite for growth factor-dependent T cell proliferation.  相似文献   

9.
Interleukin-3 (IL-3) is a lymphokine which stimulates the proliferation of normal and transformed multilineage hematopoietic cells. Recently we reported that bryostatin 1, a macrocyclic lactone and potent activator of protein kinase C, could stimulate normal multipotential hematopoietic progenitor cells in vitro in the absence of added polypeptide growth factors. We have now used the murine IL-3-dependent cell line FDC-P1, derived from normal murine marrow cells, to examine the early biochemical events associated with stimulation of hematopoietic cells. We find that both IL-3 and bryostatin 1 are mitogenic and stimulate the growth of FDC-P1 cells. Cells grown for extended periods in the presence of bryostatin 1 (1 nM) alone retain IL-3 responsiveness, indicating that bryostatin 1 does not induce an IL-3-independent state. Protein phosphorylation studies in cells treated with either IL-3 or bryostatin 1 indicate that both stimulators can mediate the rapid (within 5 min) serine-specific phosphorylation of several nuclear envelope polypeptides, including lamin B. Both IL-3- and bryostatin 1-mediated nuclear envelope phosphorylation is dose-dependent, occurring at concentrations which are mitogenic to FDC-P1 cells. The extent of nuclear envelope phosphorylation mediated by IL-3 and bryostatin 1 correlates with the mitogenic response. Furthermore, both mitogens mediate the rapid immunologic translocation of protein kinase C to the nuclear envelope where phosphorylation occurs. These data indicate that the early mitogenic signal(s) generated by IL-3 and bryostatin 1 may converge at the level of the nuclear envelope, perhaps through a protein kinase C-like activity which mediates phosphorylation of specific nuclear envelope polypeptides such as lamin B.  相似文献   

10.
Two novel analogs of human (h) GH, 1) Des-7-hGH (Arg8Met, Asp11Ala) in which the Arg8 was substituted by Met and Asp11 by Ala, and 2) bovine (b) GH/hGH hybrid II (MetAla 1-13/14-191, Ala11Asp) composed of 13 N-terminal amino acid of bGH and elongated by two amino acids (Met-Ala-1-13) and 14-191 amino acids of hGH, were constructed and expressed in Escherichia coli. CD spectra indicated that the alpha-helix content of the purified proteins was similar to that of the native hormone. Both analogs retained their full ability to stimulate the proliferation of Nb2 lymphoma cells, and their binding to the lactogen receptors in homogenate of Nb2 cells and in microsomal fraction from bovine lactating mammary gland was only slightly reduced. However, their ability to bind to the somatogen receptors in intact IM-9 lymphocytes and bovine liver was reduced by 7- to 11-fold (bGH/hGH hybrid II) and 20- to 30-fold (Des-7-hGH). Both analogs were able to down-regulate the respective lactogen and somatogen receptors in intact Nb2 and IM-9 cells. The galactopoietic activity of both analogs in the lactating bovine mammary explants bioassay was almost completely abolished, and the bGH/hGH hybrid II exhibited a remarkable antagonistic activity. These results further indicate that the lactogen receptors in different species or organs are not identical. We have shown that the new recombinant analogs of hGH that recognize both somatogen and lactogen receptors but have modified postreceptor effects are helpful in elucidating these differences.  相似文献   

11.
Alloreactive CTL clone D2-23 proliferated in response to antigenic cells without IL-2 production. Among subclones of D2-23, the F1 but not F2 clone proliferated in response to soluble aCD3 or PMA, although both clones proliferated in response to immobilized aCD3, antigenic cells or soluble aCD3 plus costimulatory cells. The difference in responsiveness between F1 and F2 was not caused by distinct expression of CD3 or Fc receptors. Cyclosporin A, which totally blocks IL-2 production of Th1 cells, barely or only partially inhibited PMA- or aCD3-induced proliferation of F1. F1 did not produce cytokines for proliferation of F2 in response to soluble aCD3. Tyrosine phosphorylation developed for various proteins of F1 and F2 at the levels apparently correlated to the extent of cell proliferation when the cells were stimulated with soluble aCD3 or PMA. The proliferative responsiveness of F1 and F2 to the described stimulators was maintained by stimulation with IL-2 plus antigenic cells, or even IL-2 alone, but was decreased during resting culture or by stimulation with immobilized aCD3. These results show evidence of a new TCR-linked mechanism for CTL proliferation that is independent of costimulatory cell- or cytokine-mediated signaling, but is originally prepared by prior stimulation with IL-2.  相似文献   

12.
The sst2A receptor is expressed in the endocrine, gastrointestinal, and neuronal systems as well as in many hormone-sensitive tumors. This receptor is rapidly internalized and phosphorylated in growth hormone-R2 pituitary cells following somatostatin binding (Hipkin, R. W., Friedman, J., Clark, R. B., Eppler, C. M., and Schonbrunn, A. (1997) J. Biol. Chem. 272, 13869-13876). The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), also stimulates sst2A phosphorylation. Here we examine the mechanisms and consequences of PMA and agonist-induced sst2A phosphorylation. Like somatostatin, both PMA and bombesin increased sst2A receptor phosphorylation within 2 min. The PKC inhibitor GF109203X blocked PMA- and bombesin- stimulated sst2A phosphorylation, whereas stimulation by the somatostatin analog SMS 201-995 was unaffected. Agonist and PMA each stimulated phosphorylation in two receptor domains, the third intracellular loop and the C-terminal tail. Functionally, PMA dramatically increased the internalization of the sst2A receptor-ligand complex. This PMA stimulation was blocked by GF109203X, whereas basal internalization was unaffected. However, neither basal nor PMA-stimulated internalization was altered by pertussis toxin, whereas both were blocked by hypertonic sucrose. Therefore PKC activation and agonist binding stimulate sst2A phosphorylation by distinct mechanisms, and PKC potentiates internalization of the sst2A receptor via clathrin-coated pits. Thus, hormonal stimulation of PKC-coupled receptors may provide a mechanism for regulating the inhibitory actions of somatostatin in target tissue.  相似文献   

13.
The high-affinity receptor for interleukin-2 (IL-2) is composed of two distinct subunits with molecular weights of 55,000 and 75,000 (p55 and p75). While the presence of the high-affinity receptor requires the simultaneous expression of p55 and p75, these subunits can also be expressed independently, resulting in IL-2 receptors with low and intermediate affinities, respectively. IL-2 can induce proliferation in cells expressing either the intermediate affinity p75 receptor or the p55.p75 high-affinity complex, suggesting that p75 is responsible for signal transduction. We have previously shown that signal transduction by the high-affinity IL-2 receptor involves the activation of a tyrosine protein kinase. In order to evaluate the role of p75 in the activation of this kinase we assessed the ability of IL-2 to induce the activation of a tyrosine protein kinase in the human leukemic cell lines Hut 78 and YT. These cells express p75 as the predominant IL-2 receptor. IL-2-dependent tyrosine phosphorylation was observed in both cell lines and the concentrations of IL-2 needed to stimulate this phosphorylation were similar to that required for binding to the p75 receptor. Antibodies that inhibit binding of IL-2 to p55 had no effect on the IL-2-induced tyrosine phosphorylations in YT cells, while antibodies that block the binding of IL-2 to p75 completely inhibited the phosphorylations. These results demonstrate that the signaling capacity for the IL-2-induced tyrosine phosphorylation resides in the p75 receptor.  相似文献   

14.
To determine whether activation of protein kinase C is involved in the proliferation of interleukin-3 (IL-3) -dependent cells, we examined the effect of tumor-promoting phorbol esters on the in vitro proliferation of the IL-3-dependent cell lines FD and DA-1. The viability of FD and DA-1 cells cultured for 24 hours in 100 nM phorbol myristate acetate (PMA) and 10% FCS was similar to that of cells cultured in 25% WEHI-3 conditioned medium as a source of IL-3, and 10% FCS. FD cells failed to proliferate in concentrations of FCS of up to 50%, while DA-1 cell proliferation was not markedly influenced by FCS. By contrast, PMA promoted the proliferation of FD and DA-1 cells in the absence of FCS and enhanced their proliferation in the presence of 10% FCS, 60- and 20-fold, respectively. Stimulation of proliferation was achieved with as little as 10 nM PMA and was maximal at 100 nM PMA. Low concentrations (0.05-0.1%) of WEHI-3 CM promoted the proliferative response of FD and DA-1 cells to PMA, but at concentrations of WEHI-3 CM greater than 0.8%, no further increment in proliferation was obtained with PMA. As little as 1/2 hour of exposure to phorbol esters was sufficient to cause translocation of protein kinase C from the cytosol to the membranes of DA-1 cells, and 1 hour of exposure to phorbol esters was sufficient to stimulate DNA synthesis. A protein kinase C inhibitor, H-7, at a concentration of 10 microM inhibited phorbol ester-induced stimulation of DA-1 cell proliferation. When DA-1 cells were exposed to the calcium ionophore A23187 in addition to both a phorbol ester and IL-3, their proliferation was enhanced over that stimulated by only the phorbol ester and IL-3. The data indicate that stimulation of proliferation of IL-3-dependent cells involves the activation of protein kinase C.  相似文献   

15.
To determine whether insulin activates protein kinase C in BC3H-1 myocytes, we evaluated changes in protein phosphorylation, protein kinase activities, and the intracellular translocation of protein kinase C activity in response to insulin and phorbol esters. Phorbol 12-myristate 13-acetate (PMA), but not insulin, stimulated the phosphorylation of an acidic Mr 80,000 protein which has been shown to be an apparently specific marker for protein kinase C activation. In addition, PMA, but not insulin, stimulated the rapid association of protein kinase C activity with a cellular particulate fraction. In contrast to these differences, both insulin and PMA stimulated the phosphorylation of ribosomal protein S6 and activated a ribosomal protein S6 kinase in cell-free extracts from cells exposed to these agents. In cells exposed to high concentrations of PMA for 16 h, protein kinase C activity and immunoreactivity were abolished, without changes in cellular morphology. Under these conditions, insulin, but not PMA, stimulated phosphorylation of the ribosomal protein S6 in intact cells and activated the S6 kinase in cell-free extracts derived from insulin-treated intact cells. We conclude that: insulin does not appear to activate protein kinase C in BC3H-1 myocytes, at least as assessed by phosphorylation of the Mr 80,000 protein; both insulin and PMA activate an S6 protein kinase in these cells; and insulin can promote S6 phosphorylation and activate the S6 kinase normally in protein kinase C-deficient cells. Activation of the S6 kinase by insulin and PMA, although apparently proceeding through different mechanisms, may explain some of the similar biological actions of these compounds in BC3H-1 myocytes.  相似文献   

16.
Phosphorylation of 40S ribosomal protein S6 is regulated in part by the mitogen-activated p70 S6 kinase (p70s6k). Following the addition of IL-2 to the IL-2 dependent human cell line Kit225, or mitogenic activation of resting human T cells, a rapid phosphorylation of p70s6k was observed by immunoblotting. Rapamycin (RAP), a potent suppressor of T-cell proliferative responses, markedly inhibited the phosphorylation of p70s6k induced by IL-2 in Kit225 cells or by the mitogens added to resting T cells. Other immunosuppressants such as cyclosporin A or an FK506 analogue were without effect. Moreover, the effect of RAP was restricted to p70s6k; it did not inhibit the phosphorylation of p90rsk, another kinase which utilizes the S6 protein as a substrate. These data indicate for the first time that RAP may target the pathway leading to p70s6k phosphorylation during human T-cell proliferation.  相似文献   

17.
18.
Lymphokines including IL-2, IL-4, and IL-6 are involved in the induction of Ig production by activated B cells. We have investigated the role of protein kinases in IL-6-induced IgM secretion by SKW6.4 cells, an IL-6 responsive B cell line. IL-6-stimulated IgM production was inhibited by elevated intracellular cAMP induced either by the addition of dibutyryl cAMP or cholera toxin. The inhibitory effect of elevated intracellular cAMP was blocked by n-(2-(Methylamino)ethyl)-5-isoquinolinesulfonic dihydrochloride (H8), an inhibitor of protein kinase A. H8 did not affect IgM secretion induced by IL-6. In contrast, the addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H7), an inhibitor of protein kinase C activity, markedly inhibited IL-6-stimulated IgM production by SKW6.4 cells. H7 and elevated intracellular cAMP inhibited IgM mRNA expression and subsequent IgM synthesis by SKW6.4 cells. SKW6.4 proliferation, as determined by [3H]thymidine incorporation, was not markedly affected by IL-6, dibutyryl cAMP, cholera toxin, H7 or H8. PMA, an activator of protein kinase C, directly stimulated significant IgM secretion by SKW6.4 cells. When added to PMA-stimulated SKW6.4 cells, IL-6 stimulated additional IgM production. This observation suggested that IL-6 could stimulate differentiation without activating protein kinase C. This was confirmed by demonstrating that IL-6 did not stimulate production of diacylglycerol, did not induce the translocation of protein kinase C from the cytosolic compartment to the plasma membrane and could induce SKW6.4 cells to produce IgM after depletion of their cellular protein kinase C by PMA. Taken together these results suggests that IL-6-stimulated IgM production requires utilization of an H7-inhibitable protein kinase that can be inhibited by a protein kinase A-dependent pathway. Despite the fact that PMA can stimulate IgM production in SKW6.4 cells, IL-6 appears to use a protein kinase pathway other than protein kinase C to induce IgM production.  相似文献   

19.
H L Wu  C Albrightson  P Nambi 《Peptides》1999,20(6):675-678
RACK (receptor for activated C-kinase) is a protein that binds and translocates protein kinase C (PKC) to the appropriate cellular organelles. The binding of RACK has been mapped to C2 region of PKC. A number of peptides from the C2 region of PKCbeta have been shown to inhibit the translocation and activation of PKCbeta. This investigation was undertaken to study the role of PKCbeta in rat mesangial cell proliferation mediated by a number of mitogens. Exposure of rat mesangial cells to thrombin, endothelin, epidermal growth factor, and phorbol 12,13-dibutyrate resulted in increased [3H]thymidine incorporation. Pretreatment of mesangial cells with Ro 32-0432 (selective PKC inhibitor) inhibited the proliferation mediated by all the above mitogens, suggesting that these mitogens mediated proliferation through PKC. Experiments were performed to further evaluate the involvement of PKCbeta in this process by using the peptide derived from the C-2 region of PKCbeta as a tool. The data suggest that although the peptide (P) alone had no effect on basal- or mitogen-mediated proliferation, the peptide in the presence of a carrier peptide (PC) inhibited proliferation mediated by endothelin. In the same experiment, proliferation mediated by epidermal growth factor, thrombin and phorbol dibutyrate was unaffected, suggesting that in rat mesangial cells, endothelin mediated proliferation through the activation of PKCbeta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号