首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The X-ray crystal structure of 1L-1-O-acetyl-2,3:5,6-di-O-isopropylidene-chiro-inositol is described. The inositol ring deviates considerably from the ideal chair conformation to a flattened chair. A comparison of its conformation in solution with that in solid was made by the use of 1H NMR. This conformational analysis revealed that the title compound adopts similar conformations in solid state and in solution states irrespective of solvent polarity.  相似文献   

2.
The X-ray crystal structure of 1l-1,2:4,5-di-O-isopropylidene-allo-inositol, is described. The inositol ring deviate slightly from the ideal chair conformation to a flattened chair. A comparison of its conformation in solution with that in solid was made by the use of 1H NMR. This conformational analysis revealed that the title compound adopts similar conformations in solid state and in solution in low polar solvents like benzene and CHCl3 while in high polar solvents such as Me2SO, the solid state conformation is not retained.  相似文献   

3.
Methyl 5-O-methyl-alpha-d-glycero-d-idoseptanoside (3) and methyl 5-O-methyl-beta-d-glycero-d-guloseptanoside (4) were investigated as (1-->5)-linked di-/oligoseptanoside mimetics. Here we report the synthesis of 3 and 4 and describe their preferred solution conformations through a combination of ab initio/DFT calculations and (1)H (3)J(H,H) NMR coupling constant analysis. The conformations of 3 and 4 observed in this study are discussed in comparison to those of the parent (C5 hydroxy) compounds 1 and 2. The results indicate that methyl 5-O-methyl-alpha-septanoside 3 is relatively rigid and adopts the same (3,4)TC(5,6) conformation as 1. Methyl 5-O-methyl-beta-septanoside 4 is somewhat less rigid than its parent septanoside (2). In addition to the (6,O)TC(4,5) conformation adopted by 2, beta-septanoside 4 also populates the adjacent (3,4)TC(5,6) conformation. Glycosylation at C5 on beta-septanoside 4 therefore increases its overall flexibility and allows access to alternative ring conformations.  相似文献   

4.
The synthesis and conformational studies of (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-allo-inositol and (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-6-O-methyl-allo-inositol are described. Solid state conformations of the title compounds have been studied by solving their X-ray crystal structures. The inositol ring in both the compounds deviate considerably from the ideal chair conformation to flattened chair conformation in the solid state. Their conformations in solution were studied by the use of 1H NMR spectroscopy. These conformational analyses revealed that the title compounds adopt similar conformations in solid and solution states irrespective of the solvent polarity.  相似文献   

5.
A useful set of empirical rules is put forward to predict the conformations of cyclic tetrapeptides and cyclic tetradepsipeptides on the basis of primary structure, briefly presented as follows: A conformation allowing an intramolecular hydrogen bond (IMHB) of gamma-turn is preferred, and an ester bond always adopts a trans form. On a right-handed peptide ring, the carbonyl group acylating a D residue is oriented to the upper side of the main ring. The carbonyl group acylating a D proline or an N-methyl-D-amino acid residue is oriented to the lower side of the ring, forming a cis bond. The LDDL configurational sequence adopts a cis-trans-cis-trans backbone with Ci symmetry. A glycine residue behaves as a D residue in an L-peptide. Conformations of cyclotetrapeptides containing two glycine residues at diametric positions or containing an N-methyl-dehydroamino acid residue are predicted by use of appendices of rule 5. Almost all conformations of cyclic tetrapeptides are predicted by these rules. Energetical rationalization of the rules and prediction of possible new conformations are described. Conformations of cyclo(-L-Pro-L-Leu-D-Tyr(Me)-L-Ile-)(1) and cyclo (-L-Pro-D-Leu-D-Tyr(Me)-L-Ile)(2) are compared. Results of n.m.r. experiments showed that compound 1 adopts a unique cis-trans-trans-trans backbone with a gamma-turn IMHB, and 2 has a cis-trans-cis-trans backbone with Ci symmetry. These observations confirmed the rules described above. Peptides 1 and 2 are the first diastereomeric peptides with trans (LD) and cis (DD) secondary amide bonds.  相似文献   

6.
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.  相似文献   

7.
We have synthesized and crystallized the cyclic peptide (Gly-Aib-Gly) 2. Its structure has been determined by conventional X-ray diffracti on methods. In the crystal it adopts a conformation with one β-turn (type I) and its mirror image at the other side of the ring. All conformation al angles are similar to those reported for these amino acid residues. In particular the Aib residue has a conformation intermediate between α- and 310-helical conformations. The ring is an adequate model for the β-turn conformation. A molecule of formic acid is found in the crystal which shows a very short hydrogen bond with one of the glycine carbonyl groups.  相似文献   

8.
The Aib-D Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III β-turns. The occurrence of prime turns facilitates the formation of β-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (1) has been previously shown to form a β-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx=DAla, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD3OH) and non-hydrogen bonding (CDCl3) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-DAla-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl3 and β-hairpin conformations in CD3 OH. The β-turn conformations (type-I'/III) stabilized by intramolecular 4→1 hydrogen bonds are observed for the peptide Boc-Aib-D Ala-NHMe (4) and Boc-Aib-Aib-NHMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4→1 hydrogen bonds. The peptide Boc-Val-Aib-DAla-Leu-NHMe (3) adopts a novel α-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4→1 and one 5→1). The Aib-DAla segment adopts a type-I' β-turn conformation. The observation of an NOE between Val (1) NH?HNCH3 (5) in CD3OH suggests, that the solid state conformation is maintained in methanol solutions.  相似文献   

9.
The X-ray structure of the gamma-subunit of the dissimilatory sulfite reductase (DsrC) from Archaeoglobus fulgidus was determined at 1.12 and 2.1A resolution, in the two crystal forms named DsrC(nat) and DsrC(ox) the latter being cocrystallized with the oxidizing agent tert-butyl hydroperoxide. The fold corresponds to that of the homologous protein from Pyrobaculum aerophilum but is significantly more compact. The most interesting, highly conserved C-terminal arm adopts a well-defined conformation in A. fulgidus DsrC in contrast to the completely disordered conformation in P. aerophilum DsrC. The functional relevance of both conformations and of a potentially redox-active disulfide bond between the strictly invariant Cys103 and Cys114 are discussed.  相似文献   

10.
Uracil phosphoribosyltransferase (UPRTase) catalyzes the conversion of 5-phosphate-alpha-1-diphosphate (PRPP) and uracil to uridine 5'-monophosphate (UMP) and diphosphate. The UPRTase from Sulfolobus solfataricus has a unique regulation by nucleoside triphosphates compared to UPRTases from other organisms. To understand the allosteric regulation, crystal structures were determined for S. solfataricus UPRTase in complex with UMP and with UMP and the allosteric inhibitor CTP. Also, a structure with UMP bound in half of the active sites was determined. All three complexes form tetramers but reveal differences in the subunits and their relative arrangement. In the UPRTase-UMP complex, the peptide bond between a conserved arginine residue (Arg80) and the preceding residue (Leu79) adopts a cis conformation in half of the subunits and a trans conformation in the other half and the tetramer comprises two cis-trans dimers. In contrast, four identical subunits compose the UPRTase-UMP-CTP tetramer. CTP binding affects the conformation of Arg80, and the Arg80 conformation in the UPRTase-UMP-CTP complex leaves no room for binding of the substrate PRPP. The different conformations of Arg80 coupled to rearrangements in the quaternary structure imply that this residue plays a major role in regulation of the enzyme and in communication between subunits. The ribose ring of UMP adopts alternative conformations in the cis and trans subunits of the UPRTase-UMP tetramer with associated differences in the interactions of the catalytically important Asp209. The active-site differences have been related to proposed kinetic models and provide an explanation for the regulatory significance of the C-terminal Gly216.  相似文献   

11.
Site-directed spin-labeling of proteins whereby the spin-label methyl 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl)methanethiolsulfonate (SLMTS) is reacted with the -SH groups of cysteinyl residues incorporated into a protein by mutagenesis has been successfully applied to investigate secondary structure and conformational transitions of proteins. In these studies, it is expected that the spin-label moiety adopts different conformations dependent on its local environment. To determine the conformation of SLMTS in solution reacted with L-cysteine (SLMTCys) and bound in the active site of the Glu240Cys mutant of TEM-1 beta-lactamase, we have synthesized SLMTS both of natural abundance isotope composition and in site-specifically deuterated forms for electron nuclear double resonance (ENDOR) studies. ENDOR-determined electron-proton distances from the unpaired electron of the nitroxyl group of the spin-label to the methylene and methyl protons of SLMTS showed three conformations of the oxypyrrolinyl ring with respect to rotation around the S-S bond dependent on the solvent dielectric constant. For SLMTCys, two conformations of the molecule were compatible with the ENDOR-determined electron-nucleus distances to the side-chain methylene protons and to H(alpha) and H(beta1,2) of cysteine. To determine SLMTS conformation reacted with the Glu240Cys mutant of TEM-1 beta-lactamase, enzyme was overexpressed in both ordinary and perdeuterated minimal medium. Resonance features of H(alpha) and H(beta1,2) of the Cys240 residue of the mutant and of the side-chain methylene protons within the spin-label moiety yielded electron-proton distances that sterically accommodated the two conformations of free SLMTCys in solution.  相似文献   

12.
The complex of Lactobacillus casei dihydrofolate reductase with trimethoprim and NADP+ exists in solution as a mixture of approximately equal amounts of two slowly interconverting conformational states [Gronenborn, A., Birdsall, B., Hyde, E. I., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1981) Mol. Pharmacol. 20, 145]. These have now been further characterized by multinuclear NMR experiments, and a partial structural model has been proposed. 1H NMR spectra at 500 MHz show that the environments of six of the seven histidine residues differ between the two conformations. The characteristic 1H and 31P chemical shifts of nuclei of the coenzyme in the two conformations of the complex are identical in analogous complexes formed with a number of trimethoprim analogues, indicating that the nature of the two conformations is the same in each case. The pyrophosphate 31P resonances have been assigned to the two conformations, and integration of the 31P spectrum shows that the ratio of conformation I to conformation II varies from 0.4 to 2.3 in the complexes with the various trimethoprim analogues, the ratio for the trimethoprim complex itself being 1.2. Transferred NOE experiments, together with the 1H and 13C chemical shifts, indicate that in conformation II of the complex the nicotinamide ring of the coenzyme has swung away from the enzyme surface into solution; this is made possible by changes in the conformation of the pyrophosphate moiety. In conformation I, by contrast, the nicotinamide ring remains bound to the enzyme. 13C and 15N experiments show that trimethoprim is protonated on N1 in both conformations of the ternary complex. Analysis of the 1H chemical shifts of trimethoprim in terms of ring current effects shows that in conformation I of the ternary complex trimethoprim retains the same conformation as in its binary complex, but 13C, 15N, and 19F [using 2,4-diamino-5-(3,5-dimethoxy-4-fluoro-benzyl)pyrimidine] experiments show that the environment of both the pyrimidine ring and benzyl ring is affected by the proximity of the coenzyme. Less information is available about the conformation of the inhibitor in conformation II of the complex, but its environment is similar to that in the binary enzyme-inhibitor complex. The implications of the existence of these two conformations of the enzyme for understanding cooperativity in binding between NADP+ and trimethoprim are briefly discussed.  相似文献   

13.
Diethylglycine (Deg) residues incorporated into peptides can stabilize fully extended (C5) or helical conformations. The conformations of three tetrapeptides Boc-Xxx-Deg-Xxx-Deg-OMe (Xxx=Gly, GD4; Leu, LD4 and Pro, PD4) have been investigated by NMR. In the Gly and Leu peptides, NOE data suggest that the local conformations at the Deg residues are fully extended. Low temperature coefficients for the Deg(2) and Deg(4) NH groups are consistent with their inaccessibility to solvent, in a C5 conformation. NMR evidence supports a folded beta-turn conformation involving Deg(2)-Gly(3), stabilized by a 4-->1 intramolecular hydrogen bond between Pro(1) CO and Deg(4) NH in the proline containing peptide (PD4). The crystal structure of GD4 reveals a hydrated multiple turn conformation with Gly(1)-Deg(2) adopting a distorted type II/II' conformation, while the Deg(2)-Pro(3) segment adopts a type III/III' structure. A lone water molecule is inserted into the potential 4-->1 hydrogen bond of the Gly(1)-Deg(2) beta-turn.  相似文献   

14.
The structure of serotonin N-acetyltransferase (also known as arylalkylamine N-acetyltransferase; AANAT) bound to a potent bisubstrate analog inhibitor has been determined at 2.0 A resolution using a two-edge (Se, Br) multiwavelength anomalous diffraction (MAD) experiment. This acetyl-CoA dependent enzyme is a member of the GCN5-related family of N-acetyltransferases (GNATs), which share four conserved sequence motifs (A-D). In serotonin N-acetyltransferase, motif A adopts an alpha/beta conformation characteristic of the phylogenetically invariant cofactor binding site seen in all previously characterized GNATs. Motif B displays a significantly lower level of conservation among family members, giving rise to a novel alpha/beta structure for the serotonin binding slot. Utilization of a brominated CoA-S-acetyl-tryptamine-bisubstrate analog inhibitor and the MAD method permitted conclusive identification of two radically different conformations for the tryptamine moiety in the catalytic site (cis and trans). A second high-resolution X-ray structure of the enzyme bound to a bisubstrate analog inhibitor, with a longer tether between the acetyl-CoA and tryptamine moieties, demonstrates only the trans conformation. Given a previous proposal that AANAT can catalyze an alkyltransferase reaction in a conformationally altered active site relative to its acetyltransferase activity, it is possible that the two conformations of the bisubstrate analog observed crystallographically correspond to these alternative reaction pathways. Our findings may ultimately lead to the design of analogs with improved AANAT inhibitory properties for in vivo applications.  相似文献   

15.
Kurihara Y  Ueda K 《Carbohydrate research》2006,341(15):2565-2574
The interconversion pathways of the pyranose ring conformation of alpha-L-idose from a (4)C1 chair to other conformations were investigated using density functional calculations. From these calculations, four different ring interconversion paths and their transition state structures from the (4)C1 chair to other conformations, such as B(3,O), and (1)S3, were obtained. These four transition-state conformations cover four possible combinations of the network patterns of the hydroxyl group hydrogen bonds (clockwise and counterclockwise) and the conformations of the primary alcohol group (tg and gg). The optimized conformations, transition states, and their intrinsic reaction coordinates (IRC) were all calculated at the B3LYP/6-31G** level. The energy differences among the structures obtained were evaluated at the B3LYP/6-311++G** level. The optimized conformations indicate that the conformers of (4)C1, (2)S(O), and B(3,O) have similar energies, while (1)S3 has a higher energy than the others. The comparison of the four transition states and their ring interconversion paths, which were confirmed using the IRC calculation, suggests that the most plausible ring interconversion of the alpha-L-idopyranose ring occurs between (4)C1 and B(3,O) through the E3 envelope, which involves a 5.21 kcal/mol energy barrier.  相似文献   

16.
Markham GD  Norrby PO  Bock CW 《Biochemistry》2002,41(24):7636-7646
S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo calculations. Nuclear Overhauser effect measurements and computational results for AdoMet indicate a predominantly anti conformation about the glycosidic bond with a variety of conformations about the methionyl C(alpha)-C(beta) and C(beta)-C(gamma) bonds. An AdoMet conformation in which the positively charged sulfonium sulfur is near an electronegative oxygen in the ribose ring is common. Comparisons of NMR results for AdoMet with those for the uncharged S-adenosylhomocysteine and 5'-methylthioadenosine, and the anionic ATP, indicate that the solution conformations are not dictated mainly by molecular charge. In 20 reported structures of AdoMet.protein complexes, both anti and syn glycosidic torsional angles are found. The methionyl group typically adopts an extended conformation in complexes with enzymes that transfer the methyl group from the sulfonium center, but is more folded in complexes with proteins that do not catalyze reactions involving the sulfur and which can use the sulfonium sulfur solely as a binding site. The conformational energies of AdoMet in these crystal structures are comparable to those found for AdoMet in solution. The sulfonium sulfur is in van der Waals contact with a protein heteroatom in the structures of four proteins, which reflects an energetically favorable contact. Interactions of the sulfonium with aromatic rings are rarely observed.  相似文献   

17.
Pejchal R  Sargeant R  Ludwig ML 《Biochemistry》2005,44(34):11447-11457
Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a (betaalpha)(8) barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH(3)-H(4)folate have now been determined at resolutions of 1.95 and 1.85 A, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformation and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH(3)-H(4)folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops beta2-alpha2 (L2), beta3-alpha3 (L3), and beta4-alpha4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a "closed" conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an "open" conformation to allow NADH to bind.  相似文献   

18.
P E Grebow  T M Hooker 《Biopolymers》1974,13(11):2349-2366
Semiempirical conformational energy calculations were carried out for the cyclic dipeptide L -alanyl-L -histidine diketopiperazine. The results indicate that electrostatic effects are probably significant in determining the conformation assumed by this molecule. When the imidazole group is in its uncharged state the most stable conformations of the molecule are those with the imidazole ring folded over the diketopiperazine ring (χ1 = 60°). Upon protonation of the imidazole group the folded conformation may be destabilized relative to conformations characterized by χ1 positions near 180°.  相似文献   

19.
Ryanodine receptors (RyRs) are large conductance intracellular channels controlling intracellular calcium homeostasis in myocytes, neurons, and other cell types. Loss of RyR’s constitutive cytoplasmic partner FKBP results in channel sensitization, dominant subconductance states, and increased cytoplasmic Ca2+. FKBP12 binds to RyR1’s cytoplasmic assembly 130?Å away from the ion gate at four equivalent sites in the RyR1 tetramer. To understand how FKBP12 binding alters RyR1’s channel properties, we studied the 3D structure of RyR1 alone in the closed conformation in the context of the open and closed conformations of FKBP12-bound RyR1. We analyzed the metrics of conformational changes of existing structures, the structure of the ion gate, and carried out multivariate statistical analysis of thousands of individual cryoEM RyR1 particles. We find that under closed state conditions, in the presence of FKBP12, the cytoplasmic domain of RyR1 adopts an upward conformation, whereas absence of FKBP12 results in a relaxed conformation, while the ion gate remains closed. The relaxed conformation is intermediate between the RyR1-FKBP12 complex closed (upward) and open (downward) conformations. The closed-relaxed conformation of RyR1 appears to be consistent with a lower energy barrier separating the closed and open states of RyR1-FKBP12, and suggests that FKBP12 plays an important role by restricting conformations within RyR1’s conformational landscape.  相似文献   

20.
M D Bruch  J Rizo  L M Gierasch 《Biopolymers》1992,32(12):1741-1754
In an effort to explore the influence of interfacial environments on reverse turns, we have performed a detailed analysis by nmr of the solution conformations of two cyclic pentapeptides in sodium dodecyl sulfate (SDS) micelles. The first peptide, cyclo (D-Phe1-Pro2-Gly3-D-Ala4-Pro5), adopts a single rigid conformation in solution (either chloroform or dimethylsulfoxide) and in crystals, whereas the second, cyclo (Gly1-Pro2-D-Phe3-Gly4-Val5), is much more flexible and adopts different conformations in the crystal and in solution. Both of these peptides are solubilized by SDS micelles, and nmr relaxation rates indicate that they are both partially immobilized by interaction with the micelles. Furthermore, some amide protons in both peptides participate in hydrogen bonds with water. In the presence of micelles, the former peptide retains a conformation essentially the same as that found in crystals and in solution, which consists of a beta turn and an inverse gamma turn. However, the micellar environment has a significant effect on the latter peptide. In particular, the population of a conformer containing a cis Gly-Pro peptide bond is increased significantly. The most likely conformation of the cis isomer, determined by a combination of nmr and restrained molecular dynamics, contains a Gly1-Pro2 delta turn and a gamma turn about D-Phe3. The nmr data on the trans isomer indicate that this isomer is averaging between two conformations that differ mainly in the orientation of the D-Phe3-Gly4 peptide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号