首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
31P NMR spectra of heart in-situ in live guinea pigs were obtained continuously in 20.5 s time blocks during 3 min of anoxia, during subsequent reoxygenation and, in separate animals, during terminal anoxia. Reversible anoxia resulted in rapid degradation of phosphocreatine (t 1/2 = 54.5 +/- 2.5 s) which recovered fully during reoxygenation. Heart Pi increased during anoxia and returned to basal levels after oxygen was restored. During 3 min of anoxia, no significant changes in ATP levels or pH were detected. The results demonstrate that it is feasible to measure rapid fluxes of high energy phosphates by 31P NMR in intact animals during and after anoxic stress to the myocardium.  相似文献   

2.
The dynamic of the phosphatidylinositol (PI), the phosphatidylinositol 4-phosphate (PIP) and the phosphatidylinositol-4,5-diphosphate (PIP2) contents were studied in the correlation with the neuronal spike activity in cat brain cortex under acute oxygen deficiency caused by cessation of artificial ventilation for 1, 2.5 and 5 min. It was shown that the 1-min anoxia produced the depression of both PIP and PIP2 contents. The depression was followed by the development of the 'asphyxia neuronal activation'. During 2.5 and 5 min of anoxia the decrease of PIP2 content and increase of PIP one were detected against a background of neuronal bioelectrical activity depression. The PI content was constant during all the anoxic period.  相似文献   

3.
The effect of anoxia and substrate removal on cytosolic free calcium (Ca2+i), cell calcium, ATP content, and calcium efflux was determined in cultured monkey kidney cells (LLC-MK2) exposed to 95% N2, 5% CO2 for 60 min. In the control period, the basal Ca2+i level was 70.8 +/- 9.4 nM. During 1 h of anoxia without substrate, ATP content decreased 70%, Ca2+i and calcium efflux increased 2.5-fold, while the total cell calcium did not change. When the cells were perfused again with O2 and 5 mM glucose, the ATP concentration, Ca2+i, and calcium efflux returned to control levels within 15-20 min. In the presence of 20 mM glucose, anoxia did not produce any change in ATP, in Ca2+i or in calcium efflux. An important source of calcium contributing to the rise in Ca2+i induced by anoxia appears to be extracellular because the rate of rise in Ca2+i is proportional to the extracellular calcium concentration, and because La3+ which blocks calcium influx greatly reduces the rise in Ca2+i. Mitochondria appear to control Ca2+i as well since the early rise in Ca2+i cannot be blocked by La3+ during the initial phase of anoxia, and since the mitochondrial inhibitor carbonyl cyanide p-trifluoromethoxyphenylhydrazone increases Ca2+i further during reoxygenation and slows the return of Ca2+i to control levels.  相似文献   

4.
Cao CM  Xia Q  Zhang X  Xu WH  Jiang HD  Chen JZ 《Life sciences》2003,72(22):2451-2463
The aim of the present study is to investigate the effect of Salvia miltiorrhiza (SM) on contraction and the intracellular calcium of isolated ventricular myocytes during normoxia or anoxia and reoxygenation using a video tracking system and spectrofluorometry. Cardiac ventricular myocytes were isolated enzymatically by collagenase and exposed to 5 min of anoxia followed by 10 min of reoxygenation. SM (1-9 g/L) depressed both contraction and the [Ca(2+)](i) transient in a dose-dependent manner. SM did not affect the diastolic calcium level and the sarcolemmal Ca(2+) channel of myocytes but decreased the caffeine-induced calcium release. During anoxia, the +/-dL/dtmax, amplitudes of contraction (dL) of cell contraction and [Ca(2+)](i) transients were decreased, while the diastolic calcium level was increased. None of the parameters returned to the pre-anoxia level during reoxygenaton. However, SM (3 g/L) did attenuate the changes in cell contraction and intracellular calcium induced by anoxia and reoxygenation. It is concluded that SM has different effects on normoxic and anoxic cardiomyocytes. The SM-induced reduction of changes in contraction and intracellular calcium induced by anoxia/reoxygenation indicates that SM may be beneficial for cardiac tissue in recovery of mechanical function and intracellular calcium homeostasis.  相似文献   

5.
We examined the effects of in vitro anoxia and in vivo hypoxia (8% O2/92% N2) on norepinephrine (NE)- and carbachol-stimulated phosphoinositide (PI) turnover in rat brain slices. The formation of 3H-labeled polyPI in cortical slices was impaired by in vitro anoxia and fully restored by reoxygenation. Accumulation of 3H-labeled myo-inositol phosphates (3H-IPs) stimulated by 10(-5) M NE was significantly reduced by anoxia (control at 60 min, 1,217 +/- 86 cpm/mg of protein; anoxia for 60 min, 651 +/- 82 cpm/mg; mean +/- SEM; n = 5; p less than 0.01), and reoxygenation following anoxia resulted in overshooting of the accumulation (control at 120 min, 1,302 +/- 70 cpm/mg; anoxia for 50 min plus oxygenation for 70 min, 1,790 +/- 126 cpm/mg; n = 5; p less than 0.01). The underlying mechanisms for the two phenomena--the decrease caused by anoxia and the overshooting caused by reoxygenation following anoxia--seemed to be completely different because of the following observations. (a) Although the suppression of NE-stimulated accumulation at low O2 tensions was also observed in Ca2+-free medium, the overshooting in response to reoxygenation was not. (b) Carbachol-stimulated accumulation was significantly reduced by anoxia and was restored by reoxygenation only to control levels. Thus, the postanoxic overshooting in accumulation of 3H-IPs seems to be a specific response to NE. (c) The decrease observed at low O2 tensions was due to a decrease in Emax value, whereas the postanoxic overshooting was due to a decrease in EC50 value.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of anoxia and reoxygenation on the synthesis and secretion of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) was studied in primary cultures of human umbilical vein endothelial cells. Sublethal anoxia, determined by trypan blue dye exclusion and lactate dehydrogenase release, was produced by cell culture under a 95% N2, 5% CO2 atmosphere for 2-24 h and was followed by reoxygenation with 95% air, 5% CO2 for 24 or 48 h. Anoxia did not alter the levels of mRNA for t-PA or PAI-1 in the cells or the secretion of t-PA or PAI-1 into the medium. At 24 h, t-PA secreted into conditioned medium was 7.0 +/- 1.4 ng/2 x 10(6) cells (n = 9) and PAI-1 was 300 +/- 13 IU/2 x 10(6) cells (n = 9), whereas the content of t-PA mRNA was 2.2 pg/micrograms of RNA and PAI-1 mRNA was 180 pg/micrograms of RNA. During reoxygenation, however, t-PA antigen and PAI-1 activity as well as mRNA for PAI-1 decreased proportionally to the duration of anoxia, to reach 27 +/- 1.0, 49 +/- 2.0, and 47 +/- 14% of control values, respectively, within 24 h of anoxia. t-PA mRNA also decreased significantly during reoxygenation following anoxia, but the extent could not be accurately quantitated. Addition, during anoxia, of a 200 micrograms/ml concentration of the superoxide anion radical scavenger superoxide dismutase or of a 5 mM concentration of the iron chelator deferoxamine mesylate prevented the subsequent decrease of t-PA antigen during reoxygenation; addition of these compounds during reoxygenation had no effect. Superoxide dismutase, but not deferoxamine mesylate, when added during anoxia prevented the subsequent decrease in PAI-1 activity. These studies suggest that the marked alteration of endothelial cell fibrinolysis during anoxia followed by reoxygenation is most likely mediated by a mechanism dependent on oxygen radicals. Impaired endothelial cell fibrinolysis may contribute to the pathophysiology of ischemia/reperfusion injury.  相似文献   

7.
Electrical stimulation of isolated muscles may lead to membrane depolarization, gain of Na(+), loss of K(+) and fatigue. These effects can be counteracted with β(2)-agonists possibly via activation of the Na(+)-K(+) pumps. Anoxia induces loss of force; however, it is not known whether β(2)-agonists affect force and ion homeostasis in anoxic muscles. In the present study isolated rat extensor digitorum longus (EDL) muscles exposed to anoxia showed a considerable loss of force, which was markedly reduced by the β(2)-agonists salbutamol (10(-6) M) and terbutaline (10(-6) M). Intermittent stimulation (15-30 min) clearly increased loss of force during anoxia and reduced force recovery during reoxygenation. The β(2)-agonists salbutamol (10(-7)-10(-5) M) and salmeterol (10(-6) M) improved force development during anoxia (25%) and force recovery during reoxygenation (55-262%). The effects of salbutamol on force recovery were prevented by blocking the Na(+)-K(+) pumps with ouabain or by blocking glycolysis with 2-deoxyglucose. Dibutyryl cAMP (1 mM) or theophylline (1 mM) also improved force recovery remarkably. In anoxic muscles, salbutamol decreased intracellular Na(+) and increased (86)Rb uptake and K(+) content, indicating stimulation of the Na(+)-K(+) pumps. In fatigued muscles salbutamol induced recovery of excitability. Thus β(2)-agonists reduce the anoxia-induced loss of force, leading to partial force recovery. These data strongly suggest that this effect is mediated by cAMP stimulation of the Na(+)-K(+) pumps and that it is not related to recovery of energy status (PCr, ATP, lactate).  相似文献   

8.
Without oxygen, all mammals suffer neuronal injury and excitotoxic cell death mediated by overactivation of the glutamatergic N-methyl-D-aspartate receptor (NMDAR). The western painted turtle can survive anoxia for months, and downregulation of NMDAR activity is thought to be neuroprotective during anoxia. NMDAR activity is related to the activity of another glutamate receptor, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). AMPAR blockade is neuroprotective against anoxic insult in mammals, but the role of AMPARs in the turtle's anoxia tolerance has not been investigated. To determine whether AMPAR activity changes during hypoxia or anoxia in the turtle cortex, whole cell AMPAR currents, AMPAR-mediated excitatory postsynaptic potentials (EPSPs), and excitatory postsynaptic currents (EPSCs) were measured. The effect of AMPAR blockade on normoxic and anoxic NMDAR currents was also examined. During 60 min of normoxia, evoked peak AMPAR currents and the frequencies and amplitudes of EPSPs and EPSCs did not change. During anoxic perfusion, evoked AMPAR peak currents decreased 59.2 +/- 5.5 and 60.2 +/- 3.5% at 20 and 40 min, respectively. EPSP frequency (EPSP(f)) and amplitude decreased 28.7 +/- 6.4% and 13.2 +/- 1.7%, respectively, and EPSC(f) and amplitude decreased 50.7 +/- 5.1% and 51.3 +/- 4.7%, respectively. In contrast, hypoxic (Po(2) = 5%) AMPAR peak currents were potentiated 56.6 +/- 20.5 and 54.6 +/- 15.8% at 20 and 40 min, respectively. All changes were reversed by reoxygenation. AMPAR currents and EPSPs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In neurons pretreated with CNQX, anoxic NMDAR currents were reversibly depressed by 49.8 +/- 7.9%. These data suggest that AMPARs may undergo channel arrest in the anoxic turtle cortex.  相似文献   

9.
The response of cAMP to antidiuretic hormone (ADH) was studied using rat renal medullary cells in a monolayer culture. In addition, cAMP response to parathyroid hormone (PTH) was studied in renal cortical cells. As the culture aged, an increase in basal cAMP content and a gradual decrease in the cAMP responsiveness to arginine vasopressin (AVP) were observed. After 2 days of culture, AVP and hPTH-(1-34) produced a rapid increase in intracellular cAMP with single peaks, after 10 min and 5 min, respectively. Extracellular cAMP was increased linearly by both AVP and hPTH-(1-34). The response of cAMP to AVP was markedly greater in the medulla than in the cortex, while the response to hPTH-(1-34) was remarkable only in the cortex. Outstanding sensitivity of cAMP responsiveness was observed in this system, i.e., 10(-12) M AVP (1 pg/ml) and 2.43 X 10(-10) M hPTH-(1-34) (1 ng/ml) provoked significant increases in cAMP from the basal level of 0.31 +/- 0.04 and 0.59 +/- 0.05 pmol/dish to 0.79 +/- 0.03 and 1.07 +/- 0.13 pmol/dish, respectively (P less than 0.001). In the medulla, potencies of lysine vasopressin (LVP), DDAVP and oxytocin at a concentration of 10(-9) M were 76.1%, 154.2% and 8.1% of that of AVP, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.  相似文献   

11.
The functional activity, adenine nucleotides, and creatine phosphate content of spontaneously beating isolated rabbit atria were measured prior to anoxia, after 1 hr anoxia, and at the end of 1 hr reoxygenation at pH 6.7 and 7.2 During anoxia at pH 7.2 there was 13.3% loss of adenine nucleotides pool, 35.2% loss of ATP, 36.2% increase in ADP, 200% increase in AMP, and a decrease to 8.8% of CP assayed to the beating atria in oxygen. At pH 6.7 there was almost the same decrease in CP, about 10% decrease in ATP, no change in total adenine nucleotides, no change in AMP and a higher increase in ADP (88.7%). The postanoxic recovery was much more complete when the pH was 6.7 during anoxia, and the first 40 min of reoxygenation. The extent of recovery of functional activity correlated well with the level of ATP in all cases not CP. Since the adenylate kinase and ATPase activity both decrease at acidic pH, their combined diminution would tend to preserve the adenine nucleotide pool and thus the better recovery at pH 6.7, because of a decrease in energy demand and unavailability of AMP for the degradation process. This study also supports the notion of compartmented adenine nucleotides connected by the creatine phosphate-creatine energy shuttle.  相似文献   

12.
Many aerobic organisms encounter oxygen-deprived environments and thus must have adaptive mechanisms to survive such stress. It is important to understand how mitochondria respond to oxygen deprivation given the critical role they play in using oxygen to generate cellular energy. Here we examine mitochondrial stress response in C. elegans, which adapt to extreme oxygen deprivation (anoxia, less than 0.1% oxygen) by entering into a reversible suspended animation state of locomotory arrest. We show that neuronal mitochondria undergo DRP-1-dependent fission in response to anoxia and undergo refusion upon reoxygenation. The hypoxia response pathway, including EGL-9 and HIF-1, is not required for anoxia-induced fission, but does regulate mitochondrial reconstitution during reoxygenation. Mutants for egl-9 exhibit a rapid refusion of mitochondria and a rapid behavioral recovery from suspended animation during reoxygenation; both phenotypes require HIF-1. Mitochondria are significantly larger in egl-9 mutants after reoxygenation, a phenotype similar to stress-induced mitochondria hyperfusion (SIMH). Anoxia results in mitochondrial oxidative stress, and the oxidative response factor SKN-1/Nrf is required for both rapid mitochondrial refusion and rapid behavioral recovery during reoxygenation. In response to anoxia, SKN-1 promotes the expression of the mitochondrial resident protein Stomatin-like 1 (STL-1), which helps facilitate mitochondrial dynamics following anoxia. Our results suggest the existence of a conserved anoxic stress response involving changes in mitochondrial fission and fusion.  相似文献   

13.
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.  相似文献   

14.
Immunohistochemical staining for prostaglandin F2-alpha (PG F2 alpha) was conducted to identify PG F2 alpha synthesizing or binding sites in anoxic rat brains. Anoxia was produced in 22 rats to lower the arterial oxygen tension (PaO2) to 21 +/- 4 mmHg by ventilation with a 95% nitrogen and 5% carbon dioxide gas mixture. In 8 animals anoxia was continued for 30 sec, and in 14 rats for 3 min. Prior to decapitation, 5 animals in the 30-sec anoxia group and 8 rats in the 3-min anoxia group were reoxygenated for 5 min, while the remaining 9 were not. Five-min reoxygenation returned the PaO2 to 106 +/- 7. Three non-reoxygenated and 3 reoxygenated rats, all pretreated with indomethacin, and 5 normal rats served as controls. The brains were snap-frozen. The cryosections were stained by the indirect immunofluorescence method. PG F2 alpha was noted mainly in pial vessels in all normal rats. All reoxygenated rats showed a positive reaction not only in blood vessels, but also in neurons, particularly hippocampal neurons and Purkinje cells. The staining of the above neurons was noted to be less in non-reoxygenated rats. The stronger staining was observed in rats reoxygenated after 3-min anoxia than 30-sec anoxia. The indomethacin-pretreated rats showed almost no increase in staining intensity. The above results indicate that reoxygenation after anoxia results in an increase of PG F2 alpha in neurons of both cerebrum and cerebellum.  相似文献   

15.
The ultrastructure of cat sensomotor cortex has been studied during a 15-minute recovery after 2.5-6-minute oxygen supply cessation. An increase of osmopholia of free and endoplasmic reticulum bound ribosomes was detected in addition to a great number of altered mitochondria with longitudinal crystal arrangement. Besides, numerous activated synapses, local destructive changes of membrane complexes in dendrite and myelinated axons cytoplasm and glycogen granule accumulation in neuroglia were noticed. During the recovery period more prominent changes were shown after a 6-minute anoxia than after a 2.5-minute one.  相似文献   

16.
Changes in membrane-bound calcium (Ca2+(b)) content in the brain cortex membrane structures were studied on subcellular fractions (synaptosomes, microsomes, mitochondria) during in vitro anoxia. The changes in Ca2+ content in hydrophobic domains of intracellular membranes were assessed, using chlorotetracycline fluorescent probe. It has been found that membranes of different neuronal compartments are not equally vulnerable to anoxia. A decrease in Ca2+9(b) content in response to anoxia occurs in synaptosomes and microsomes much sooner than in mitochondria. Therefore, Ca2+ release from intracellular membrane compartments, preceding the massive inward flow of extracellular Ca2+, seems to be one of those mechanisms initiating a complex range of intracellular reactions to disturbed oxygen supply in brain cortex neurons.  相似文献   

17.
The present study investigated the protective effects of Ginkgo biloba extract (EGb 761) on rat liver mitochondrial damage induced by in vitro anoxia/reoxygenation. Anoxia/reoxygenation was known to impair respiratory activities and mitochondrial oxidative phosphorylation efficiency. ADP/O (2.57 +/- 0.11) decreased after anoxia/reoxygenation (1.75 +/- 0.09, p < .01), as well as state 3 and uncoupled respiration (-20%, p < .01), but state 4 respiration increased (p < .01). EGb 761 (50-200 microg/ml) had no effect on mitochondrial functions before anoxia, but had a specific dose-dependent protective effect after anoxia/reoxygenation. When mitochondria were incubated with 200 microg/ml EGb 761, they showed an increase in ADP/O (2.09 +/- 0.14, p < .05) and a decrease in state 4 respiration (-22%) after anoxia/reoxygenation. In EPR spin-trapping measurement, EGb 761 decreased the EPR signal of superoxide anion produced during reoxygenation. In conclusion, EGb 761 specially protects mitochondrial ATP synthesis against anoxia/reoxygenation injury by scavenging the superoxide anion generated by mitochondria.  相似文献   

18.
Microcalorimetry is the only direct method for measuring moment-to-moment changes in whole-cell metabolism (as heat output) during anoxia. We have adapted this methodology, in conjunction with standard muscle isolation techniques, to monitor metabolic transitions in isolated frog (Rana temporaria) sartorius muscle during anoxia and recovery (reoxygenation). Anoxia (sustained 1 h, following 2 h progressive hypoxia) suppressed muscle heat output to 20% of the stable normoxic level. This effect was fully reversible upon reoxygenation. Metabolite profiles were consistent with other anoxia-tolerant vertebrates – most notably, adenosine triphosphate (ATP) content during anoxia and reoxygenation remained unchanged from normoxia (pre-anoxic control). In addition, the concentration of K+ ions ([K+]) in interstitial dialysates remained stable (2–3 mM) throughout anoxia and recovery. Interstitial [lactate] increased slightly, in accord with anaerobiosis supporting suppressed metabolic rates during anoxia. The degree of anoxic suppression of metabolism observed is similar to other vertebrate models of anoxia tolerance. Furthermore, stable ATP concentrations and interstitial [K+] in the isolated tissue suggests that intrinsic mechanisms suppress metabolism in a manner that coordinates ATP supply and demand and avoids the severe ion imbalances that are characteristic of hypoxia-sensitive systems. Accepted: 15 January 1998  相似文献   

19.
The ultrastructural changes in the cat sensorimotor cortex during 30- to 60-minute recovery after a 2.5- to 6-minute anoxia have been studied. The most prominent changes were hypertrophy of Golgi apparatus, reorganization of the neuronal endoplasmic reticulum (including the formation of lamellar bodies), increase of the number of lysosomes within nerve cell bodies, formation of deep invaginations of the neuronal cytoplasm into the nucleus, intensification of endocytosis and phagocytosis in the dendrites, appearance of the ultrastructural heterogeneity of the synapses (from normal synapses to depleted ones), normalization of ultrastructure of the part of mitochondrial pool. Glycogen granules were revealed in glial cell processes. The ultrastructural changes after a 6-minute anoxia followed by a 30- to 60-minute recovery were more expressed than after a 2.5-minute one.  相似文献   

20.
Hypoxia-ischemia with reperfusion is known to cause reactive oxygen species-related damage in mammalian systems, yet, the anoxia tolerant freshwater turtle is able to survive repeated bouts of anoxia/reoxygenation without apparent damage. Although the physiology of anoxia tolerance has been much studied, the adaptations that permit survival of reoxygenation stress have been largely ignored. In this study, we examine ROS production in the turtle striatum and in primary neuronal cultures, and examine the effects of adenosine (AD) on cell survival and ROS. Hydroxyl radical formation was measured by the conversion of salicylate to 2,3-dihydroxybenzoic acid (2,3-DHBA) using microdialysis; reoxygenation after 1 or 4 h anoxia did not result in increased ROS production compared with basal normoxic levels, nor did H2O2 increase after anoxia/reoxygenation in neuronally enriched cell cultures. Blockade of AD receptors increased both ROS production and cell death in vitro , while AD agonists decreased cell death and ROS. As turtle neurons proved surprisingly susceptible to externally imposed ROS stress (H2O2), we propose that the suppression of ROS formation, coupled to high antioxidant levels, is necessary for reoxygenation survival. As an evolutionarily selected adaptation, the ability to suppress ROS formation could prove an interesting path to investigate new therapeutic targets in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号