首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesion rate of cells under charge regulation onto a spherical collector with constant potential is investigated in this paper. Particularly, the effect of the presence of cationic electrolytes in the suspension medium on the adhesion rate is examined. The result reveals that the presence of cationic electrolytes in the suspension medium raises the electrostatic repulsion force between cell and collector surface, when the separation distance between them is small than a critical value. This has the effect of decreasing the adhesion rate of cells. The adhesion rate of cells is quite sensitive to the value of Hamaker constant, especially at a high ionic strength value.  相似文献   

2.
3.
Molecular force measurements quantified the impact of polysialylation on the adhesive properties both of membrane-bound neural cell adhesion molecule (NCAM) and of other proteins on the same membrane. These results show quantitatively that NCAM polysialylation increases the range and magnitude of intermembrane repulsion. The repulsion is sufficient to overwhelm both homophilic NCAM and cadherin attraction at physiological ionic strength, and it abrogates the protein-mediated intermembrane adhesion. The steric repulsion is ionic strength dependent and decreases substantially at high monovalent salt concentrations with a concomitant increase in the intermembrane attraction. The magnitude of the repulsion also depends on the amount of polysialic acid (PSA) on the membranes, and the PSA-dependent attenuation of cadherin adhesion increases with increasing PSA-NCAM:cadherin ratios. These findings agree qualitatively with independent reports based on cell adhesion studies and reveal the likely molecular mechanism by which NCAM polysialylation regulates cell adhesion and intermembrane space.  相似文献   

4.
Micropipette-aspirated erythrocytes exhibit reversible changes in sphericity (surface-to-volume ratio) in response to applied electric fields. The potentials were applied between the shaft of the pipette and the bathing medium using Ag-AgCl electrodes and current clamping electronics. The change in surface-to-volume ratio is evidenced as a reversible change in the length of the cell projection in the pipette at constant aspiration pressure and changing voltage. The magnitude of the changes decreased in proportion to the inverse of the solute concentration indicating that the change in sphericity was due to a change in cell volume. Reversible changes in projection length equivalent to a 10% change in cell volume were observed to occur over times on the order of 10 s. The magnitude and time course of the effect were not affected by the removal of intracellular hemoglobin or inhibition of anion exchange. The effect was reduced by the presence of lanthanum and other multivalent cations in the suspending solution, suggesting that surface charge may play a role in mediating the effect.  相似文献   

5.
Based on the assumption that the electrostatic charges on the surface of sheep leukocytes arise from the dissociation of ionogenic groups, together with the presence of divalent cation (or trivalent cation) in the suspending medium of low ionic strength (or high ionic strength), the non-linear Poisson-Boltzmann equation for cell interaction with a solid surface with constant potential (or constant charge) is numerically solved in this paper. The cellular surface potential and the repulsive (or attractive) force is expressed as the function of separation distance. Because of shrinking the thickness of the electrostatic double layer at high ionic strength, the presence of cationic electrolyte has a less influential role on both the cellular surface potential and interaction force than at low ionic strength. However, due to the continuous equilibration of the ionogenic groups on the cellular surface as separation distance decreases, the presence of cationic electrolyte will not always reduce the interaction force during the whole adhesion period. The distance at which the cationic electrolyte changes its effect from positive to negative is termed the critical separation distance in this paper.  相似文献   

6.
S Imre  T Szilágyi  S Tóth 《Blut》1976,33(1):49-54
In the presence of lysolecithin at physiological pH it was found that the increase of ionic strength facilitates the adhesion of hen erythrocytes. In this medium, dibutyryl cyclic adenosine monophosphate (DBcAMP) increases the adhesion index of the cells. If the osmotic pressure is elevated without a proper increase of ionic strength, the lysolecithin induced hemolysis and adhesion are found to be lacking.  相似文献   

7.
Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H(+), Ca(2+), and Mg(2+) increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H(+) (10(-10) M) and divalent cations (<10(-8) M), adhesion forces are greatly reduced and tight seals are not formed. H(+) (10(-7) M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.  相似文献   

8.
Kinetics of the inhibition of thrombin by hirudin   总被引:32,自引:0,他引:32  
S R Stone  J Hofsteenge 《Biochemistry》1986,25(16):4622-4628
The dissociation constant for hirudin was determined by varying the concentration of hirudin in the presence of a fixed concentration of thrombin and tripeptidyl p-nitroanilide substrate. The estimate of the dissociation constant determined in this manner displayed a dependence on the concentration of substrate which suggested the existence of two binding sites at which the substrate was able to compete with hirudin. A high-affinity site could be correlated with the binding of the substrate at the active site, and the other site had an affinity for the substrate that was 2 orders of magnitude lower. Extrapolation to zero substrate concentration yielded a value of 20 fM for the dissociation constant of hirudin at an ionic strength of 0.125. The dissociation constant for hirudin was markedly dependent on the ionic strength of the assay; it increased 20-fold when the ionic strength was increased from 0.1 to 0.4. This increase in dissociation constant was accompanied by a decrease in the rate with which hirudin associated with thrombin. This rate could be measured with a conventional recording spectrophotometer at higher ionic strength and was found to be independent of the binding of substrate at the active site.  相似文献   

9.
Surface thermodynamics of normal and pathological human granulocytes   总被引:1,自引:0,他引:1  
Surface tensions of normal and pathological granulocytes were determined by (1) adhesion to solid substrates of different surface tensions while suspended in liquid media of different surface tensions, and by (2) measurement of cell-liquid-vapor contact angles obtained with sessile drops of saline water on cell monolayers. The results obtained by the two different methods were in close conformation with one another. With the cell adhesion emthod some residual leukocyte adhesion still persists even under conditions where there no longer is a van der Waals attraction between cells and solid substrate. At low ionic strength and by the abolishment of all multivalent cations through the admixture of EDTA, that residual cell adhesion virtually disappears (with normal as well as with pathological granulocytes), indicating that the earlier residual cell adhesion did indeed arise from electrostatic interactions mediated by multivalent cations (probably Ca2+). Comparison of the capacities for engulfment and the surface thermodynamics data of normal and pathological granulocytes obtained in this study leads to the novel observation that the phagocytic episode from half to complete engulfment of bacterial particles by granulocytes appears to be the crucial step from the thermodynamic point of view.  相似文献   

10.
Condensation of chromatin: role of multivalent cations   总被引:4,自引:0,他引:4  
D Sen  D M Crothers 《Biochemistry》1986,25(7):1495-1503
We have used electric dichroism to investigate the influence of multivalent cations upon the compaction of chicken erythrocyte chromatin from the unfolded, 10-nm fiber to the 30-nm solenoid and subsequent aggregation. The pattern of condensation, which consists of compaction plus aggregation, is found to be strikingly similar for a variety of cations of differing charge, including the physiologically important polyamines spermine and spermidine. With a few exceptions such as Cu2+ and Gd3+, an optimally compacted fiber with reproducible hydrodynamic properties is produced prior to the onset of aggregation. We report the concentrations of di-, tri-, and tetravalent cations required for optimal condensation; in addition, for tri- and tetravalent cations, we were able to estimate the extent of charge neutralization produced by their binding to the optimally compacted fiber. The results show that the multivalent ion concentration required for optimal compaction decreases as cationic charge increases. In addition, the effect of a mixture of dilute mono- and multivalent cations on chromatin condensation is synergistic, rather than competitive as has been found for the multivalent cation induced condensation of DNA or the B----Z conformational transition. A simple calculation indicates that the entropy of ion uptake in chromatin condensation is surprisingly constant for a range of ionic conditions; this factor may be a dominant one in determining the folding equilibrium.  相似文献   

11.
A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules.  相似文献   

12.
A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules.  相似文献   

13.
In this paper we introduce an important parameter called the iso-competition point (ICP), to characterize the competition binding to DNA in a two-cation-species system. By imposing the condition of charge neutralization fraction equivalence theta1 = ZthetaZ upon the two simultaneous equations in Manning's counterion condensation theory, the ICPs can be calculated. Each ICP, which refers to a particular multivalent concentration where the charge fraction on DNA neutralized from monovalent cations equals that from the multivalent cations, corresponds to a specific ionic strength condition. At fixed ionic strength, the total DNA charge neutralization fractions thetaICP are equal, no matter whether the higher valence cation is divalent, trivalent, or tetravalent. The ionic strength effect on ICP can be expressed by a semiquantitative equation as ICPZa/ICPZb = (Ia/Ib)Z, where Ia, Ib refers to the instance of ionic strengths and Z indicates the valence. The ICP can be used to interpret and characterize the ionic strength, valence, and DNA length effects on the counterion competition binding in a two-species system. Data from our previous investigations involving binding of Mg2+, Ca2+, and Co(NH3)63+ to lambda-DNA-HindIII fragments ranging from 2.0 to 23.1 kbp was used to investigate the applicability of ICP to describe counterion binding. It will be shown that the ICP parameter presents a prospective picture of the counterion competition binding to polyelectrolyte DNA under a specific ion environment condition.  相似文献   

14.
15.
The experiments presented here confirm the hypothesis according to which, in our experimental system of differential cell adhesion (where we studied the kinetics of the earliest period of adhesion of a suspension of chick embryo neuroblasts to layers of astroblasts or fibroblasts), the mechanism of adhesion appears to consist of two steps, the first of which is a short-term reversible phase corresponding to a binding equilibrium. In fact, adhesion of neuroblasts to each of the two cell layers occurs according to kinetic constants and attains levels which are characteristic for each of the two adhesion systems. In both systems, neuroblasts that have not adhered at equilibrium are able to adhere if inoculated over a fresh cell layer of the same type, as they do during the first inoculation; conversely, neuroblasts that have adhered to a cell layer can be made to de-adhere by substituting cell-free fresh medium to the inoculation medium containing non-adhering neuroblasts. This shows that, as predicted for a reversible equilibrium system, removal of adhering neuroblasts from the system at equilibrium provokes adhesion, and removal of non-adhered neuroblasts provokes de-adhesion. Furthermore the level of adhesion at equilibrium is, in all cases, the same. The reversibility of adhesion, which is almost quantitative during the onset of the equilibrium, gradually decreases with time, indicating the presence of a process of irreversible attachment between cells after the first reversible step. The developmental implications of the complete sequential mechanisms are briefly discussed.  相似文献   

16.
The effects of monovalent and divalent cations on the hemolytic activity of Cerebratulus lacteus toxin A-III were studied. The activity of cytolysin A-III is remarkably increased in isotonic, low ionic strength buffer, the HC50 (the toxin concentration yielding 50% lysis of a 1% suspension of erythrocytes after 45 min at 37 degrees C) being shifted from 2 micrograms per ml in Tris or phosphate-buffered saline to 20-30 ng per ml in sucrose or mannitol buffered with Hepes, corresponding to a 50-100-fold increase in potency. On the contrary, hemolytic activity decreases progressively as the monovalent cation concentration in the medium increases for Na+, K+, or choline salts. The divalent cations Ca2+ and Zn2+ likewise inhibit the cytolysin A-III activity, but more strongly than do the monovalent cations specified above. Zn2+ at a concentration of 0.3 mM totally abolishes both toxin A-III-dependent hemolysis of human erythrocytes and toxin-induced leakage from liposomes. The observation of similar effects in both natural membranes and artificial bilayers suggests an effect of Zn2+ on the toxin A-III-induced membrane lesion, especially since Zn2+ does not alter binding of the cytolysin. The dose-response curve for toxin A-III exhibits positive cooperativity, with a Hill coefficient of 2 to 3. However, analysis of toxin molecular weight by analytical ultracentrifugation reveals no tendency to aggregate at protein concentrations up to 2 mg per ml. These data are consistent with a post-binding aggregational step which may be affected by the ionic strength of the medium.  相似文献   

17.
Effects of ionic strength and proteolytic digestion on the conformation of chromatin fibers were studied by electric birefringence and relaxation measurements. The results confirm that at low ionic strength chromatin presents structural features reflecting those observed in the presence of cations. Soluble chromatin prepared from rat liver nuclei by brief nuclease digestion exhibits a positive birefringence. As the salt concentration is increased, the transition to a compact solenoidal structure is deduced from changes in electro-optical properties: the positive birefringence gradually decreases and the observed reduction in 40 mM NaCl is nearly 95%; the relaxation time decreases dramatically and the character of the kinetic changes since the decay of birefringence described initially by a spectrum of relaxation times becomes monoexponential. On digestion with proteases at low ionic strength we observe at first a rapid increase of the positive birefringence concomitant with an increase of the relaxation time. Then the birefringence decreases and becomes negative. Chromatin undergoes two successive transitions: the first transition is explained by a lengthening of nucleosomal chains without modification of the orientation of nucleosomes within the superstructure and the second one by the unwinding of the DNA tails and internucleosomal segments. When chromatin is digested at 30 mM NaCl we find a single unfolding transition characterized by the decrease of birefringence and a slight increase in the relaxation time. The results imply that the positive birefringence of chromatin does not depend on the presence of whole histone H1 and that a salt concentration of 30 mM NaCl is sufficient to modify the initial site or/and the effects of proteolytic attack.  相似文献   

18.
Abstract

Effects of ionic strength and proteolytic digestion on the conformation of chromatin fibers were studied by electric birefringence and relaxation measurements. The results confirm that at low ionic strength chromatin presents structural features reflecting those observed in the presence of cations. Soluble chromatin prepared from rat liver nuclei by brief nuclease digestion exhibits a positive birefringence. As the salt concentration is increased, the transition to a compact solenoidal structure is deduced from changes in electro-optical properties: the positive birefringence gradually decreases and the observed reduction in 40 mM NaCl is nearly 95%; the relaxation time decreases dramatically and the character of the kinetic changes since the decay of birefringence described initially by a spectrum of relaxation times becomes monoexponential.

On digestion with proteases at low ionic strength we observe at first a rapid increase of the positive birefringence concomitant with an increase of the relaxation time. Then the birefringence decreases and becomes negative. Chromatin undergoes two successive transitions: the first transition is explained by a lengthening of nucleosomal chains without modification of the orientation of nucleosomes within the superstructure and the second one by the unwinding of the DNA tails and internucleosomal segments.

When chromatin is digested at 30 mM NaCl we find a single unfolding transition characterized by the decrease of birefringence and a slight increase in the relaxation time. The results imply that the positive birefringence of chromatin does not depend on the presence of whole histone HI and that a salt concentration of 30 mM NaCl is sufficient to modify the initial site or/and the effects of proteolytic attack.  相似文献   

19.
Strong, integrin-mediated adhesion of neutrophils to endothelium during inflammation is a dynamic process, requiring a conformational change in the integrin molecule to increase its affinity for its endothelial counterreceptors. To avoid general activation of the cell, Mg(2+) was used to induce the high-affinity integrin conformation, and micromechanical methods were used to determine adhesion probability to beads coated with the endothelial ligand ICAM-1. Neutrophils in Mg(2+) bind to the beads with much greater frequency and strength than in the presence of Ca(2+). An increase in adhesion strength and frequency was observed with both increasing temperature and contact duration (from 2 s to 1 min, 21 or 37 degrees C). The dependence of adhesion probability on contact time or receptor density yielded estimates of the effective reverse rate constant, k(r), and the equilibrium association constant, K(a), for binding of neutrophils to ICAM-1 coated surfaces in Mg(2+): k(r) approximately 0.7 s(-1) and the product K(a)rho(c) approximately 2.4 x 10(-4), where rho(c) is the density of integrin on the cell surface.  相似文献   

20.
T Pawelczyk  S Angielski 《Biochimie》1992,74(2):171-176
The effects of changing ionic strength on the activity of the 2-oxoglutarate dehydrogenase complex from pig kidney cortex were explored. This enzyme complex is found to be influenced in many ways by the ionic strength of the reaction medium. The enzyme shows an optimum activity at 0.1 M ionic strength. Increase in ionic strength from 0.1 M to 0.2 M resulted in a decrease of S0.5 for 2-oxoglutarate, and in an increase of S0.5 for NAD. Changes in ionic strength over the range of 0.05-0.2 M have little, if any, effect on S0.5 for CoA. The Hill coefficient for 2-oxoglutarate and NAD at 0.2 M ionic strength was 1.0, whereas at 0.05 M ionic strength it was 0.85 and 1.2 for 2-oxoglutarate and NAD, respectively. At 0.05 M ionic strength the pH optimum of the enzyme ranges between 7.4-7.6, but at 0.15 M ionic strength the pH optimum shifts to 7.8. The magnitude of inhibition of enzyme activity by ATP is not influenced by changes in ionic strength in the absence of calcium. However, in the presence of Ca2+, increases in ionic strength lower the inhibitory effects of ATP. The Si0.5 for ATP in both presence and absence of Ca2+ was not affected by changes in ionic strength in the range of 0.1-0.2 M. In contrast, the Sa0.5 for ADP in the absence of Ca2+ decreases as ionic strength increases. In the presence of calcium and 0.2 M ionic strength ADP has no effect on 2-oxoglutarate dehydrogenase complex activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号