首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

3.
We investigated whether low-level light irradiation prior to transplantation of adipose-derived stromal cell (ASC) spheroids in an animal skin wound model stimulated angiogenesis and tissue regeneration to improve functional recovery of skin tissue. The spheroid, composed of hASCs, was irradiated with low-level light and expressed angiogenic factors, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). Immunochemical staining analysis revealed that the spheroid of the hASCs was CD31+, KDR+, and CD34+. On the other hand, monolayer-cultured hASCs were negative for these markers. PBS, human adipose tissue-derived stromal cells, and the ASC spheroid were transplanted into a wound bed in athymic mice to evaluate the therapeutic effects of the ASC spheroid in vivo. The ASC spheroid transplanted into the wound bed differentiated into endothelial cells and remained differentiated. The density of vascular formations increased as a result of the angiogenic factors released by the wound bed and enhanced tissue regeneration at the lesion site. These results indicate that the transplantation of the ASC spheroid significantly improved functional recovery relative to both ASC transplantation and PBS treatment. These findings suggest that transplantation of an ASC spheroid treated with low-level light may be an effective form of stem cell therapy for treatment of a wound bed.  相似文献   

4.
Background aimsExpansion of hematopoietic progenitors ex vivo is currently investigated as a means of reducing cytopenia following stem cell transplantation. The principal objective of this study was to develop a new cytokine cocktail that would maximize the expansion of megakaryocyte (Mk) progenitors that could be used to reduce periods of thrombocytopenia.MethodsWe measured the individual and synergistic effects of six cytokines [stem cell factor (SCF), FLT-3 ligand (FL), interleukin (IL)-3, IL-6, IL-9 and IL-11] commonly used to expand cord blood (CB) CD34+ cells on the expansion of CB Mk progenitors and major myeloid populations by factorial design.ResultsThese results revealed an elaborate array of cytokine individual effects complemented by a large number of synergistic and antagonistic interaction effects. Notably, strong interactions with SCF were observed with most cytokines and its concentration level was the most influential factor for the expansion and differentiation kinetics of CB CD34+ cells. A response surface methodology was then applied to optimize the concentrations of the selected cytokines. The newly developed cocktail composed of SCF, thrombopoietin (TPO) and FL increased the expansion of Mk progenitors and maintained efficient expansion of clonogenic progenitors and CD34+ cells. CB cells expanded with the new cocktail were shown to provide good short- and long-term human platelet recovery and lymphomyeloid reconstitution in NOD/SCID mice.ConclusionsCollectively, these results define a complex cytokine network that regulates the growth and differentiation of immature and committed hematopoietic cells in culture, and confirm that cytokine interactions have major influences on the fate of hematopoietic cells.  相似文献   

5.
6.
7.
Background aimsBone marrow (BM)-derived cells appear to be a promising therapeutic source for the treatment of acute myocardial infarction (AMI). However, the quantity and quality of the cells to be used, along with the appropriate time of administration, still need to be defined. We thus investigated the use of BM CD34+-derived cells as cells suitable for a cell therapy protocol (CTP) in the treatment of experimental AMI.MethodsThe need for a large number of cells was satisfied by the use of a previously established protocol allowing the expansion of human CD34+ cells isolated from neonatal and adult hematopoietic tissues. We evaluated gene expression, endothelial differentiation potential and cytokine release by BM-derived cells during in vitro culture. Basal and expanded CD34+ cells were used as a delivery product in a murine AMI model consisting of a coronary artery ligation (CAL). Cardiac function recovery was evaluated after injecting basal or expanded cells.ResultsGene expression analysis of in vitro-expanded cells revealed that endothelial markers were up-regulated during culture. Moreover, expanded cells generated a CD14+ subpopulation able to differentiate efficiently into VE-cadherin-expressing cells. In vivo, we observed a cardiac function recovery in mice sequentially treated with basal and expanded cells injected 4 h and 7 days after CAL, respectively.ConclusionsOur data suggest that combining basal and expanded BM-derived CD34+ cells in a specific temporal pattern of administration might represent a promising strategy for a successful cell-based therapy.  相似文献   

8.
Thymic stromal lymphopoietin (TSLP) endows human blood‐derived CD11c+ dendritic cells (DCs) and Langerhans cells (LCs) obtained from human epidermis with the capacity to induce pro‐allergic T cells. In this study, we investigated the effect of TSLP on umbilical cord blood CD34+‐derived LC‐like cells. These cells are often used as model cells for LCs obtained from epidermis. Under the influence of TSLP, both cell types differed in several ways. As defined by CD83, CD80 and CD86, TSLP did not increase maturation of LC‐like cells when compared with freshly isolated LCs and epidermal émigrés. Differences were also found in the production of chemokine (C‐C motif) ligand (CCL)17. LCs made this chemokine only when primed by TSLP and further stimulated by CD40 ligation. In contrast, LC‐like cells released CCL17 in response to CD40 ligation, irrespective of a prior treatment with TSLP. Moreover, the CCL17 levels secreted by LC‐like cells were at least five times higher than those from migratory LCs. After maturation with a cytokine cocktail consisting of tumour necrosis factor‐α, interleukin (IL)‐1β, IL‐6 and prostaglandin (PG)E2 LC‐like cells released IL‐12p70 in response to CD40 ligation. Most importantly and in contrast to LC, TSLP‐treated LC‐like cells did not induce a pro‐allergic cytokine pattern in helper T cells. Due to their different cytokine secretion and the different cytokine production they induce in naïve T cells, we conclude that one has to be cautious to take LC‐like cells as a paradigm for ‘real’ LCs from the epidermis.  相似文献   

9.
Ex vivo-expanded, allogeneic natural killer (NK) cells can be used for the treatment of various types of cancer. In allogeneic NK cell therapy, NK cells from healthy donors must be expanded in order to obtain a sufficient number of highly purified, activated NK cells. In the present study, we established a simplified and efficient method for the large-scale expansion and activation of NK cells from healthy donors under good manufacturing practice (GMP) conditions. After a single step of magnetic depletion of CD3+ T cells, the depleted peripheral blood mononuclear cells (PBMCs) were stimulated and expanded with irradiated autologous PBMCs in the presence of OKT3 and IL-2 for 14 days, resulting in a highly pure population of CD3CD16+CD56+ NK cells which is desired for allogeneic purpose. Compared with freshly isolated NK cells, these expanded NK cells showed robust cytokine production and potent cytolytic activity against various cancer cell lines. Of note, expanded NK cells selectively killed cancer cells without demonstrating cytotoxicity against allogeneic non-tumor cells in coculture assays. The anti-tumor activity of expanded human NK cells was examined in SCID mice injected with human lymphoma cells. In this model, expanded NK cells efficiently controlled lymphoma progression. In conclusion, allogeneic NK cells were efficiently expanded in a GMP-compliant facility and demonstrated potent anti-tumor activity both in vitro and in vivo.  相似文献   

10.
Skin injury induces the formation of new blood vessels by activating the vasculature in order to restore tissue homeostasis. Vascular cells may also differentiate into matrix-secreting contractile myofibroblasts to promote wound closure. Here, we characterize a PECAM1+/Sca1+ vascular cell population in mouse skin, which is highly enriched in wounds at the peak of neoangiogenesis and myofibroblast formation. These cells express endothelial and perivascular markers and present the receptor CD38 on their surface. PECAM1+/Sca1+/CD38+ cells proliferate upon wounding and could give rise to α-SMA+ myofibroblast-like cells. CD38 stimulation in immunodeficient mice reduced the wound size at the peak of neoangiogenesis and myofibroblast formation. In humans a corresponding cell population was identified, which was enriched in sprouting vessels of basal cell carcinoma biopsies. The results indicate that PECAM1+/Sca1+/CD38+ vascular cells could proliferate and differentiate into myofibroblast-like cells in wound repair. Moreover, CD38 signaling modulates PECAM1+/Sca1+/CD38+ cell activation in the healing process implying CD38 as a target for anti-angiogenic therapies in human basal cell carcinoma.  相似文献   

11.
Purpose Immunotherapy using either dendritic cells (DCs) or expanded cytotoxic T cells (CTLs) has received increased interest in the treatment of specific malignancies including metastatic breast cancer (MBC). DCs can be generated ex vivo from monocytes or CD34+ precursors. The ability to expand and safely administer CD34-derived DCs in patients with MBC that have received prior cytotoxic chemotherapy has not been evaluated.Methods We enrolled ten patients with MBC that had received prior chemotherapy for the treatment of metastatic disease on a phase I/II trial designed to test the safety and feasibility of administering ex vivo expanded DCs from CD34+ progenitor cells.Results Using a cocktail of multiple different cytokines, we could expand DCs 19-fold compared to the initial CD34-selected product, which allowed the administration of as many as six vaccine treatments per patient. Patients received three to six injections i.v. of DCs pulsed with either the wild type GP2 epitope from the HER-2/neu protein or an altered peptide ligand, isoleucine to leucine (I2L). Toxicity was mild, with no patients demonstrating grade III toxicity during the treatment. Two patients with subcutaneous disease had a partial response to therapy, while IFN--producing CD8+ T cells could be found in two other patients during treatment.Conclusions This approach is safe and effective in generating a significant quantity of DCs from CD34-precursors.Supported in part by Grants CA 58223 and 89961 from the National Cancer Institute, the Breast Cancer Research Foundation, and RR0046 from the General Clinical Research Center program of the Division of Research Resources, National Institutes of Health.  相似文献   

12.
Delayed wound healing is a serious clinical problem in patients after surgery. A recent study has demonstrated that bone marrow-derived c-kit-positive (c-kit+) cells play important roles in repairing and regenerating various tissues and organs. To examine the hypothesis that surgical injury induces the mobilization and recruitment of c-kit+ cells to accelerate wound healing. Mice were subjected to a left pneumonectomy. The mobilization of c-kit+ cells was monitored after surgery. Using green fluorescent protein (GFP+) bone marrow-transplanted chimera mice, we investigated further whether the mobilized c-kit+ cells were recruited to effect wound healing in a skin puncture model. The group with left pneumonectomies increased the c-kit+ and CD34+ stem cells in peripheral blood 24 h after surgery. At 3 days after surgery, the skin wound size was observed to be significantly smaller, and the number of bone marrow-derived GFP+ cells and GFP+/c-kit+ cells in the wound tissue was significantly greater in mice that had received pneumonectomies, as compared with those that had received a sham operation. Furthermore, some of these GFP+ cells were positively expressed specific markers of macrophages (F4/80), endothelial cells (CD31), and myofibroblasts (αSMA). The administration of AMD3100, an antagonist of a stromal-cell derived factor (SDF)-1/CXCR4 signaling pathway, reduced the number of GFP+ cells in wound tissue and completely negated the accelerated wound healing. Surgical injury induces the mobilization and recruitment of c-kit+ cells to contribute to wound healing. Regulating c-kit+ cells may provide a new approach that accelerates wound healing after surgery.  相似文献   

13.
Background aimsThe number of hematopoietic stem cells (HSCs) is critical for transplantation. The ex vivo expansion of mobilized peripheral blood (MPB) HSCs is of clinical value for reconstitution to meet clinical need.MethodsThis study proposed a simple, defined, stromal-free and serum-free culture system (SF-HSC medium) for clinical use, which is composed of Iscove's modified Dulbecco's medium, cytokine cocktails and serum substitutes. This study also characterized the cellular properties of expanded MPB CD133+ HSCs from patients with hematologic malignancies and healthy donors by surface antigen, colony-forming cell, long-term culture-initiating cell, gene expression and in vivo engraftment assays.ResultsThe expanded fold values of CD45+ white blood cells and CD34+, CD133+, CD34+CD38?, CD133+CD38?, CD34+CD133+, colony-forming and long-term culture-initiating cells at the end of 7-day culture from CD133+ MPB of hematologic malignancies were 9.4-fold, 5.9-fold, 4.0-fold, 35.8-fold, 21.9-fold, 3.8-fold, 11.8-fold and 6.7-fold, and values from healthy donor CD133+ MPB were 20.7-fold, 14.5-fold, 8.5-fold, 83.8-fold, 37.3-fold, 6.2-fold, 19.1-fold and 14.6-fold. The high enrichment of CD38? cells, which were either CD34+ or CD133+, sustained the proliferation of early uncommitted HSCs. The expanded cells showed high levels of messenger RNA expression of HOBX4, ABCG2 and HTERT and had the in vivo ability to re-populate NOD/SCID mice.ConclusionsOur results demonstrated that an initial, limited number of MPB CD133+ HSCs could be expanded functionally in SF-HSC medium. We believe that this serum-free expansion technique can be employed in both basic research and clinical transplantation.  相似文献   

14.
Objectives: Multipotential human hair follicle stem cells can differentiate into various cell lineages and thus are investigated here as potential autologous sources for regenerative medicine. Towards this end, we have attempted to expand these cells, directly isolated from minimal amounts of hair follicle explants, to numbers more suitable for stem‐cell therapy. Materials and methods: Two types of human follicle stem cells, commercially available and directly isolated, were cultured using an in‐house developed medium. The latter was obtained from bulge areas of hair follicles by mechanical and enzymatic dissociation, and was magnetically enriched for its CD200+ fraction. Isolated cells were cultured for up to 4 weeks, on different supports: blank polystyrene, laminin‐ and MatrigelTM‐coated surfaces. Results: Two‐fold expansion was found, highlighting the slow‐cycling nature of these cells. Flow cytometry characterization revealed: magnetic enrichment increased the proportion of CD200+ cells from initially 43.3% (CD200+, CD34: 25.8%; CD200+, CD34+: 17.5%) to 78.2% (CD200+, CD34: 41.5%; CD200+, CD34+: 36.7%). Enriched cells seemed to have retained and passed on their morphological and molecular phenotypes to their progeny, as isolated CD200+ presenting cells expanded in our medium to a population with 80% of cells being CD200+: 51.5% (CD200+, CD34?) and 29.6% (CD200+, CD34+). Conclusions: This study demonstrates the possibility of culturing human hair follicle stem cells without causing any significant changes to phenotypes of the cells.  相似文献   

15.
Ge J  Cai H  Tan WS 《Cell proliferation》2011,44(6):550-557
Objectives: Ex vivo expansion is a feasible strategy, which may overcome limitation of the very low frequency of haematopoietic stem/progenitor cells, in umbilical cord blood (UCB). However, both quality of cells and safety of expanded population are critical issues to be addressed for their clinical application. Hence, in this study, we evaluated genetic stability of UCB‐derived CD34+ cells during ex vivo culture, based on karyotype analysis, as well as its effect on cell proliferation characteristics. Materials and methods: CD34+ cells were isolated from human UCB samples by immunomagnetic separation and were expanded ex vivo over a 28‐day period. Expansion of total nucleate cells, CD34+ cells and CD34+ CD38? cells was investigated. Karyotype analysis of the expanded cells from six randomly selected UCB samples was performed to evaluate their genetic stability. Results: Chromosomal abnormality of expanded cells mainly appeared by day 14, but was seldom sustained until day 28. None of the chromosomal abnormal samples displayed neoplastic proliferation, and expanded cells with altered chromosomes did not show obvious transformation phenomena according to soft agar assay. Conclusions: Ex vivo expansion could lead to occurrence of chromosomal abnormality, although here it did not produce excessive proliferative advantage of the expended cells. Importantly, chromosomal alteration seemed not to be inheritable and unlikely to result in malignant transformation. However, further in‐depth evaluation of potential clinical risks of chromosomal abnormality is warranted.  相似文献   

16.
The prevailing school of thought is that mesenchymal stromal cells (MSC) do not express CD34, and this sets MSC apart from hematopoietic stem cells (HSC), which do express CD34. However, the evidence for MSC being CD34? is largely based on cultured MSC, not tissue-resident MSC, and the existence of CD34? HSC is in fact well documented. Furthermore, the Stro-1 antibody, which has been used extensively for the identification/isolation of MSC, was generated by using CD34+ bone marrow cells as immunogen. Thus, neither MSC being CD34? nor HSC being CD34+ is entirely correct. In particular, two studies that analyzed CD34 expression in uncultured human bone marrow nucleated cells found that MSC (BMSC) existed in the CD34+ fraction. Several studies have also found that freshly isolated adipose-derived MSC (ADSC) express CD34. In addition, all of these ADSC studies and several other MSC studies have observed a disappearance of CD34 expression when the cells are propagated in culture. Thus the available evidence points to CD34 being expressed in tissue-resident MSC, and its negative finding being a consequence of cell culturing.  相似文献   

17.
Human umbilical CD34+ immature haematopoietic cells were rapidly and efficiently obtained from light density MNC (mononuclear cells) by MACS (magnetic cell sorting). An ex vivo expanded population of CD34+ was cultured in serum‐free medium supplemented with cytokines FL (flt3 ligand), SCF (stem cell factor) and TPO (thrombopoietin) in order to obtain a sufficient number of CD34+ cells. CD34+ cells expanded from cord blood for 7 days were demonstrated to increase in the absolute number of CD34+ cells by 5.12±2.47‐fold (mean±S.D., n=3). Flow cytometric analysis demonstrated that the percentage of CD34 antigen expression after expansion of the culture was 97.81±1.07%, whereas it was 69.39±10.37% in none‐expanded CD34+ cells (mean±S.D., n=3), thus defining a system that allowed extensive amplification accompanied by no maturation. MTs (metallothioneins), low molecular weight, cysteine‐rich metal‐binding proteins, exhibit various functions, including metal detoxification and homoeostasis. We here examined the expression pattern of functional members of the MT gene family in immature CD34+ cells and compared it with more mature CD34? cells in order to strengthen the proposed function of MT in differentiation. Cells were cultured in RPMI 1640 medium, with or without different zinc supplements for 24 h. Relative quantitative expression of MT isogenes in the mature CD34? cells was higher than in the immature CD34+ cells. IHC (immunohistochemical staining) revealed an increased MT protein biosynthesis in CD34? cells, greater than in CD34+ cells. Therefore, the role of MT in differentiation of human haematopoietic progenitor cells from human cord blood is reported for the first time.  相似文献   

18.
Bone marrow-derived cells have been postulated as a source of multipotent mesenchymal stem cells (MSC). However, the whole fraction of MSC remains heterogeneous and the expansion of primitive subset of these cells is still not well established. Here, we optimized the protocol for propagating the low-adherent subfraction of MSC which results in long-term expansion of population characterized by CD45CD14+CD34+ phenotype along with expression of common MSC markers. We established that the expanded MSC are capable of differentiating into endothelial cells highly expressing angiogenic markers and exhibiting functional properties of endothelium. Moreover, we found these cells to be multipotent and capable of giving rise into cells from neuronal lineages. Interestingly, the expanded MSC form characteristic cellular spheres in vitro indicating primitive features of these cells. In sum, we isolated the novel multipotent subpopulation of CD45CD14+ CD34+ bone marrow-derived cells that could be maintained in long-term culture without losing this potential.  相似文献   

19.
Background aimsThe distinction between hematopoietic stem cells (HSC) and endothelial progenitor cells (EPC) is poorly defined. Co-expression of CD34 antigen with vascular endothelial growth factor (VEGF) receptor (VEGFR2) is currently used to define EPC (1).MethodsWe evaluated the phenotypic and genomic characteristics of peripheral blood-derived CD34+ cells in 22 granulocyte–colony-stimulating factor (G-CSF)-mobilized patients with severe coronary artery disease and assessed the influence of cell selection and storage on CD34+ cell characteristics.ResultsThe median CD34+ cell contents in the products before and after enrichment with the Isolex 300i Magnetic Cell Selection System were 0.2% and 82.5%, respectively. Cell-cycle analysis showed that 80% of CD34+ cells were in G0 stage; 70% of the isolated CD34+ cells co-expressed CD133, a marker for more immature progenitors. However, less than 5% of the isolated CD34+ cells co-expressed the notch receptor Jagged-1 (CD339) and only 2% of the isolated CD34+ population were positive for VEGFR2 (CD309). Molecular assessment of the isolated CD34+ cells demonstrated extremely low expression of VEGFR2 and endothelial nitric oxide synthase (eNOS) and high expression of VEGF-A. Overnight storage at 4°C did not significantly affect CD34+ cell counts and viability. Storage in liquid nitrogen for 7 weeks did not affect the percentage of CD34+ cells but was associated with a 26% drop in cell viability.ConclusionsWe have demonstrated that the majority of isolated CD34+ cells consist of immature and quiescent cells that lack prototypic markers of EPC. High VEGF-A gene expression might be one of the mechanisms for CD34+ cell-induced angiogenesis.  相似文献   

20.
《Cytotherapy》2020,22(5):276-290
Background aimsKey obstacles in human iNKT cell translational research and immunotherapy include the lack of robust protocols for dependable expansion of human iNKT cells and the paucity of data on phenotypes in post-expanded cells.MethodsWe delineate expansion methods using interleukin (IL)-2, IL-7 and allogeneic feeder cells and anti-CD2/CD3/CD28 stimulation by which to dependably augment Th2 polarization and direct cytotoxicity of human peripheral blood CD3+Vα24+Vβ11+ iNKT cells.ResultsGene and protein expression profiling demonstrated augmented Th2 cytokine secretion (IL-4, IL-5, IL-13) in expanded iNKT cells stimulated with anti-CD2/CD3/CD28 antibodies. Cytotoxic effector molecules including granzyme B were increased in expanded iNKT cells after CD2/CD3/CD28 stimulation. Direct cytotoxicity assays using unstimulated expanded iNKT cell effectors revealed α-galactosyl ceramide (α-GalCer)-dependent killing of the T-ALL cell line Jurkat. Moreover, CD2/CD3/CD28 stimulation of expanded iNKT cells augmented their (α-GalCer-independent) killing of Jurkat cells. Co-culture of expanded iNKT cells with stimulated responder cells confirmed contact-dependent inhibition of activated CD4+ and CD8+ responder T cells.DiscussionThese data establish a robust protocol to expand and novel pathways to enhance Th2 cytokine secretion and direct cytotoxicity in human iNKT cells, findings with direct implications for autoimmunity, vaccine augmentation and anti-infective immunity, cancer immunotherapy and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号