首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M T Mas  R F Colman 《Biochemistry》1984,23(8):1675-1683
The interaction of the 2'-phosphate-containing nucleotides (NADP+, NADPH, 2'-phosphoadenosine 5'-diphosphoribose, and adenosine 2',5'-bisphosphate) with NADP+ -specific isocitrate dehydrogenase was studied by using 31P NMR spectroscopy. The separate resonances corresponding to free and bound nucleotides, characteristic for slow exchange of nuclei on the NMR time scale, were observed in the spectra of the enzyme (obtained in the presence of excess ligand) with NADP+ and NADPH in the absence and presence of Mg2+ and with 2'-phosphoadenosine 5'-diphosphoribose in the absence of metal or in the presence of the substrate magnesium isocitrate. The position of the 31P resonance of the bound 2'-phosphate group in these spectra is invariant (delta = 6) in the pH range 5-8, indicating that the pK of this group is much lower in the complexes with the enzyme than that (pK = 6.13) in the free nucleotides. The additional downfield shift of this resonance by 1.8 ppm beyond that (delta = 4.22) of the dianionic form of the 2'-phosphate in free nucleotides suggests interaction with a positively charged group(s) and/or distortion of P-O-P angles as the result of binding to the enzyme. A single resonance of 2'-phosphate was observed in the spectrum of the enzyme complex with 2'-phosphoadenosine 5'-diphosphoribose in the presence of Mg2+, with the chemical shift dependent on the nucleotide to enzyme ratio, characteristic for the fast exchange situation. Addition of metal does not perturb the environment of the 2'-phosphate in the complexes of NADP+ and NADPH with isocitrate dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The enzyme comprises three components; dI binds NAD(H), dIII binds NADP(H), and dII spans the membrane. The 1,4,5,6-tetrahydro analogue of NADH (designated H2NADH) bound to isolated dI from Rhodospirillum rubrum transhydrogenase with similar affinity to the physiological nucleotide. Binding of either NADH or H2NADH led to closure of the dI mobile loop. The 1,4,5,6-tetrahydro analogue of NADPH (H2NADPH) bound very tightly to isolated R. rubrum dIII, but the rate constant for dissociation was greater than that for NADPH. The replacement of NADP+ on dIII either with H2NADPH or with NADPH caused a similar set of chemical shift alterations, signifying an equivalent conformational change. Despite similar binding properties to the natural nucleotides, neither H2NADH nor H2NADPH could serve as a hydride donor in transhydrogenation reactions. Mixtures of dI and dIII form dI2dIII1 complexes. The nucleotide charge distribution of complexes loaded either with H2NADH and NADP+ or with NAD+ and H2NADPH should more closely mimic the ground states for forward and reverse hydride transfer, respectively, than previously studied dead-end species. Crystal structures of such complexes at 2.6 and 2.3 A resolution are described. A transition state for hydride transfer between dihydronicotinamide and nicotinamide derivatives determined in ab initio quantum mechanical calculations resembles the organization of nucleotides in the transhydrogenase active site in the crystal structure. Molecular dynamics simulations of the enzyme indicate that the (dihydro)nicotinamide rings remain close to a ground state for hydride transfer throughout a 1.4 ns trajectory.  相似文献   

3.
M F Carlier  D Pantaloni 《Biochemistry》1976,15(21):4703-4712
The binding of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide phosphate (NADP) dependent isocitrate dehydrogenase from beef liver cytoplasm was studied by several equilibrium techniques (ultracentrifugation, molecular sieving, ultrafiltration, fluorescence). Two binding sites (per dimeric enzyme molecule) were found with slightly different dissociation constants (0.5 and 0.12 muM) and fluorescence yields (7.7 and 6.3). A ternary complex was formed between enzyme, isocitrate, and NADPH, in which NADPH dissociation constant was 5 muM. On the contrary, no binding of NADPH to the enzyme took place in the presence of magnesium isocitrate. Dialysis experiments showed the existence of 1 NADP binding site/dimer, with a dissociation constant of 26 muM. When NADPH was present with the enzyme in the proportion of 1 molecule/dimer, the dissociation constant of NADP was decreased fourfold, reaching a value quantitatively comparable to the Michaelis constant. The kinetics of coenzyme binding was followed using the stopped-flow technique with fluorescence detection. NADPH binding to the enzyme occurred through one fast reaction (k1 = 20 muM-1 s-1). Dissociation of NADPH took place upon NADP binding; however, equilibrium as well as kinetic data were incompatible with a simple competition scheme. Dissociation of NADPH from the enzyme upon magnesium isocitrate binding was preceded by the formation of a transitory ternary complex in which the fluorescence of NADPH was only about 30% of that in the enzyme-NADPH complex. Then interaction between the conenzymes and the involvement of ternary complexes in the catalytic mechanism are discussed in relation with what is known about the regulatory role of the coenzyme (Carlier, M. F., and Pantaloni, D. (1976), Biochemistry, 15, 1761-1766).  相似文献   

4.
Treatment of submitochondrial particles (ETP) with trypsin at 0 degrees destroyed NADPH leads to NAD (or 3-acetylpyridine adenine dinucleotide, AcPyAD) transhydrogenase activity. NADH oxidase activity was unaffected; NADPH oxidase and NADH leads to AcPyAD transhydrogenase activities were diminished by less than 10%. When ETP was incubated with trypsin at 30 degrees, NADPH leads to NAD transhydrogenase activity was rapidly lost, NADPH oxidase activity was slowly destroyed, but NADH oxidase activity remained intact. The reduction pattern by NADPH, NADPH + NAD, and NADH of chromophores absorbing at 475 minus 510 nm (flavin and iron-sulfur centers) in complex I (NADH-ubiquinone reductase) or ETP treated with trypsin at 0 degrees also indicated specific destruction of transhydrogenase activity. The sensitivity of the NADPH leads to NAD transhydrogenase reaction to trypsin suggested the involvement of susceptible arginyl residues in the enzyme. Arginyl residues are considered to be positively charged binding sites for anionic substrates and ligands in many enzymes. Treatment of ETP with the specific arginine-binding reagent, butanedione, inhibited transhydrogenation from NADPH leads to NAD (or AcPyAD). It had no effect on NADH oxidation, and inhibited NADPH oxidation and NADH leads to AcPyAD transhydrogenation by only 10 to 15% even after 30 to 60 min incubation of ETP with butanedione. The inhibition of NADPH leads to NAD transhydrogenation was diminished considerably when butanedione was added to ETP in the presence of NAD or NADP. When both NAD and NADP were present, the butanedione effect was completely abolished, thus suggesting the possible presence of arginyl residues at the nucleotide binding site of the NADPH leads to NAD transhydrogenase enzyme. Under conditions that transhydrogenation from NADPH to NAD was completely inhibited by trypsin or butanedione, NADPH oxidation rate was larger than or equal to 220 nmol min-1 mg-1 ETP protein at pH 6.0 and 30 degrees. The above results establish that in the respiratory chain of beef-heart mitochondria NADH oxidation, NADPH oxidation, and NADPH leads to NAD transhydrogenation are independent reactions.  相似文献   

5.
Aspergillus fumigatus siderophore A (Af SidA) is a flavin-dependent monooxygenase that catalyzes the hydroxylation of ornithine, producing N(5)-hydroxyornithine. This is the first step in the biosynthesis of hydroxamate-containing siderophores in A. fumigatus. Af SidA is essential for virulence, validating this enzyme as a drug target. Af SidA can accept reducing equivalents from either NADPH or NADH and displays similar kinetic parameters when using either coenzyme. When the enzyme is reduced with NADPH and reacted with molecular oxygen, a C4a-hydroperoxyflavin intermediate is observed. When the enzyme is reduced with NADH, the intermediate is 2-fold less stable. Steady-state kinetic isotope effect values of 3 and 2 were determined for NADPH and NADH, respectively. The difference in the isotope effect values is due to differences in the rate of flavin reduction by these coenzymes. A difference in the binding mode between these coenzymes was observed by monitoring flavin fluorescence. Limited proteolysis studies show that NADP(+), and not NAD(+), protects Af SidA from proteolysis, suggesting that it induces conformational changes upon binding. Together, these results are consistent with NADPH having a role in flavin reduction and in the modulation of conformational changes, which positions NADP(+) to also play a role in stabilization of the C4a-hydroperoxyflavin.  相似文献   

6.
1. The reaction catalysed by glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate-NADP+ oxidoreductase, EC 1.1.1.49) from baker's yeast was studied in 42mM-glycylglycine buffer, pH7.4 at 25 degrees C, by initial-velocity studies and by the use of NADPH as a product inhibitor. 2. The reactions catalysed by both the soluble enzyme and a stable enzyme covalently attached to CNBr-activated Sepharose 4B probably follow an ordered reaction mechanism with NADP+ and NADPH as the leading reactants. 3. The kinetic constants obtained for the soluble enzyme lere: KNADP+m, 19 muM; KNADP+s, 23 muM; KNADPHs, 15 muM. Similar values were obtained for the immobilized enzyme. 4. The assay of the immobilized enzyme was done by using a micro packed-bed recirculation reactor, and the advantages of this technique are discussed.  相似文献   

7.
Human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) plays a crucial role in the last step of the synthesis of estrogens. A detailed kinetic study demonstrated that the enzyme shows about 240 fold higher specificity towards estrone reduction than estradiol oxidation at physiological pH using tri-phosphate cofactors. The kcat/Km values are 96 +/- 10 and 0.4 +/- 0.1 s-1 (microM)-1 respectively for the above two reactions. However, it has been shown that this difference is closely linked to the use of NADPH and NADP cofactors. A binding study using equilibrium dialysis indicated similar KD (equilibrium dissociation constant) of 11 +/- 1 and 4.7 +/- 0.9 microM for estrone and estradiol, respectively. The binding affinity of 17beta-HSD1 to estrone was significantly increased with a KD of 1.6 +/- 0.2 microM in the presence of NADP, the latter used as an analogue of the NADPH. The results of binding studies agree with the steady-state kinetics, which showed that the Km of estrone is 12-fold lower when using NADPH as a cofactor than when using NADH. These results strongly suggest that the cofactor plays a crucial role in the stimulation of the specificity for estrogen reduction.  相似文献   

8.
Steady state kinetic analysis at pH 7.0 of the reduction of DL-glyceraldehyde by pig muscle aldose reductase showed that the enzyme follows a sequential ordered mechanism with NADPH binding first. However, the "off constant" for NADP+ in the forward direction was 1 order of magnitude less than the kcat. Analysis of this anomaly by pre-steady state kinetics using stopped-flow fluorescence spectroscopy showed that this could be accounted for by isomerization of the enzyme-NADP+ complex and that the rate of isomerization is the rate-limiting step. The rate constant for this step was of the same order of magnitude as the kcat for the forward reaction. Fluorescence emission spectra of free and NADP(H)-bound enzyme suggested a conformational change upon binding of coenzyme. In the reverse direction (oxidation of glycerol) pre-steady state and steady state kinetic analyses were consistent with the rate-limiting step occurring before isomerization of the enzyme-NADPH complex. We conclude, therefore, that during the kinetic mechanism of the reduction of aldehydes by aldose reductase, a slow (kinetically detectable) conformational change in the enzyme occurs upon coenzyme binding. Since NADPH and NADP+ bind to the enzyme very tightly, this has implications for the targeting and binding of drugs that are aldose reductase inhibitors.  相似文献   

9.
Ferredoxin-NADP(+) reductase catalyses NADP(+) reduction, being specific for NADP(+)/H. To understand coenzyme specificity determinants and coenzyme specificity reversion, mutations at the NADP(+)/H pyrophosphate binding and of the C-terminal regions have been simultaneously introduced in Anabaena FNR. The T155G/A160T/L263P/Y303S mutant was produced. The mutated enzyme presents similar k(cat) values for NADPH and NADH, around 2.5 times slower than that reported for WT FNR with NADPH. Its K(m) value for NADH decreased 20-fold with regard to WT FNR, whereas the K(m) for NADPH remains similar. The combined effect is a much higher catalytic efficiency for NAD(+)/H, with a minor decrease of that for NADP(+)/H. In the mutated enzyme, the specificity for NADPH versus NADH has been decreased from 67,500 times to only 12 times, being unable to discriminate between both coenzymes. Additionally, giving the role stated for the C-terminal Tyr in FNR, its role in the energetics of the FAD binding has been analysed.  相似文献   

10.
M Yamaguchi  Y Hatefi 《Biochemistry》1989,28(14):6050-6056
The mitochondrial nicotinamide nucleotide transhydrogenase is a dimeric enzyme of monomer Mr 110,000. It is located in the inner mitochondrial membrane and catalyzes hydride ion transfer between NAD(H) and NADP(H) in a reaction that is coupled to proton translocation across the inner membrane. The amino acid sequence and the nucleotide binding sites of the enzyme have been determined [Yamaguchi, M., Hatefi, Y., Trach, K., & Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767; Wakabayashi, S., & Hatefi, Y. (1987) Biochem. Int. 15, 915-924]. N-Ethylmaleimide, as well as other sulfhydryl group modifiers, inhibits the transhydrogenase. The presence of NADP in the incubation mixture suppressed the inhibition rate by N-ethylmaleimide, and the presence of NADPH greatly increased it. NAD and NADH had little or no effect. The NADPH effect was concentration dependent and saturable, with a half-maximal NADPH concentration effect close to the Km of the enzyme for NADPH. Study of the effect of pH on the N-ethylmaleimide inhibition rate showed that NADPH binding by the enzyme lowers the apparent pKa of the N-ethylmaleimide-sensitive group by 0.4 of a pH unit and NADP binding raises this pKa by 0.4 of a pH unit, thus providing a rationale for the effects of NADP and NADPH on the N-ethylmaleimide inhibition rate. With the use of N-[3H]ethylmaleimide, the modified sulfhydryl group involved in the NADP(H)-modulated inhibition of the transhydrogenase was identified as that belonging to Cys-893, which is located 113 residues upstream of the tyrosyl residue modified by [p-(fluorosulfonyl)benzoyl]-5'-adenosine at the putative NADP(H) binding site of the enzyme (see above references).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A bacterial flavin-containing monooxygenase (bFMO) catalyses the oxygenation of indole to produce indigoid compounds. In the reductive half of the indole oxygenation reaction, NADPH acts as a reducing agent, and NADP(+) remains at the active site, protecting bFMO from reoxidation. Here, the crystal structures of bFMO and bFMO in complex with NADP(+), and a mutant bFMO(Y207S), which lacks indole oxygenation activity, with and without indole are reported. The crystal structures revealed overlapping binding sites for NADP(+) and indole, suggestive of a double-displacement reaction mechanism for bFMO. In biochemical assays, indole inhibited NADPH oxidase activity, and NADPH in turn inhibited the binding of indole and decreased indoxyl production. Comparison of the structures of bFMO with and without bound NADP(+) revealed that NADPH induces conformational changes in two active site motifs. One of the motifs contained Arg-229, which participates in interactions with the phosphate group of NADPH and appears be a determinant of the preferential binding of bFMO to NADPH rather than NADH. The second motif contained Tyr-207. The mutant bFMO(Y207S) exhibited very little indoxyl producing activity; however, the NADPH oxidase activity of the mutant was higher than the wild-type enzyme. It suggests a role for Y207, in the protection of hydroperoxyFAD. We describe an indole oxygenation reaction mechanism for bFMO that involves a ping-pong-like interaction of NADPH and indole.  相似文献   

12.
The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes hydride ion transfer between NAD(H) and NADP(H) in a reaction that is coupled to proton translocation across the inner mitochondrial membrane. The enzyme (1043 residues) is composed of an N-terminal hydrophilic segment (approximately 400 residues long) which binds NAD(H), a C-terminal hydrophilic segment (approximately 200 residues long) which binds NADP(H), and a central hydrophobic segment (approximately 400 residues long) which appears to form about 14 membrane-intercalating clusters of approximately 20 residues each. Substrate modulation of transhydrogenase conformation appears to be intimately associated with its mechanism of proton translocation. Using trypsin as a probe of enzyme conformation change, we have shown that NADPH (and to a much lesser extent NADP) binding alters transhydrogenase conformation, resulting in increased susceptibility of several bonds to tryptic hydrolysis. NADH and NAD had little or no effect, and the NADPH concentration for half-maximal enhancement of trypsin sensitivity of transhydrogenase activity (35 microM) was close to the Km of the enzyme for NADPH. The NADPH-promoted trypsin cleavage sites were located 200-400 residues distant from the NADP(H) binding domain near the C-terminus. For example, NADPH binding greatly increased the trypsin sensitivity of the K410-T411 bond, which is separated from the NADP(H) binding domain by the 400-residue-long membrane-intercalating segment. It also enhanced the tryptic cleavage of the R602-L603 bond, which is located within the central hydrophobic segment. These results, which suggest a protein conformation change as a result of NADPH binding, have been discussed in relation to the mechanism of proton translocation by the transhydrogenase.  相似文献   

13.
The binding of oxidized and reduced coenzyme (NAD+ and NADH) to 3-phosphoglyceroyl-glyceraldehyde-3-phosphate dehydrogenase has been studied spectrophotometrically and fluorimetrically. The binding of NAD+ to the acylated sturgeon enzyme is characterized by a significant quenching of the enzyme fluorescence (about 25%) and the induction of a difference spectrum in the ultraviolet absorbance region of the enzyme. Both of these spectroscopic properties are quantitatively distinguishable from those of the corresponding binary enzyme-NAD+ complex. Binding isotherms estimated by gel filtration of the acylated enzyme are in close agreement to those obtained by spectrophotometric and fluorimetric titrations. Up to four NAD+ molecules are bound to the enzyme tetramer. No anticooperativity can be detected in the binding of oxidized coenzyme, which is well described on the basis of a single class of four binding sites with a dissociation constant of 25 muM at 10 degrees C, pH 7.0. The binding of NADH to the acylenzyme has been characterized spectrophotometrically. The absorption band of the dihydronicotinamide moiety of the coenzyme is blue-shifted to 335 nm with respect to free NADH. In addition, a large hypochromicity (23%) is observed together with a significant increase of the bandwidth at half height of this absorption band. This last property is specific to the acylenzyme-DADH complex, since it disappears upon arsenolysis of the acylenzyme. The binding affinity of NADH to the acylated enzyme has been estimated by performing simultaneous spectrophotometric and fluorimetric titrations of the NADH appearance upon addition of NAD+ to a mixture of enzyme and excess glyceraldehyde 3-phosphate. In contrast to NAD+, the reduced coenzyme NADH appears to be relatively strongly bound to the acylated enzyme, the dissociation constant of the acylenzyme-NADH complex being estimated as 2.0 muM at 25 degrees C. In addition a large quenching of the NADH fluorescence (about 83%) is observed. The comparison of the dissociation constants of the coenzyme-acylenzyme complexes and the corresponding Michaelis constants suggests a reaction mechanism of the enzyme in which significant formation and dissociation of NAD+-acylenzyme and NADH-acylenzyme complexes occur. Under physiological conditions the activity of the enzyme can be regulated by the ratio of oxidized and reduced coenzymes. Possible reasons for the lack of anticooperativity in coenzyme binding to the acylated form of the enzyme are discussed.  相似文献   

14.
1. The stoicheiometries and affinities of ligand binding to isocitrate dehydrogenase were studied at pH 7.0, mainly by measuring changes in NADPH and protein fluorescence. 2. The affinity of the enzyme for NADPH is about 100-fold greater than it is for NADP+ in various buffer/salt solutions, and the affinities for both coenzymes are decreased by Mg2+, phosphate and increase in ionic strength. 3. The maximum binding capacity of the dimeric enzyme for NADPH, from coenzyme fluorescence and protein-fluorescence measurements, and also for NADP+, by ultrafiltration, is 2 mol/mol of enzyme. Protein-fluorescence titrations of the enzyme with NADP+ are apparently inconsistent with this conclusion, indicating that the increase in protein fluorescence caused by NADP+ binding is not proportional to fractional saturation of the binding sites. 4. Changes in protein fluorescence caused by changes in ionic strength and by the binding of substrates, Mg2+ or NADP+ (but not NADPH) are relatively slow, suggesting conformation changes. 5. In the presence of Mg2+, the enzyme binds isocitrate very strongly, and 2-oxoglutarate rather weakly. 6. Evidence is presented for the formation of an abortive complex of enzyme-Mg2+-isocitrate-NADPH in which isocitrate and NADPH are bound much more weakly than in their complexes with enzyme and Mg2+ alone. 7. The results are discussed in relation to the interpretation of the kinetic properties of the enzyme and its behaviour in the mitochondrion.  相似文献   

15.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

16.
Transhydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (K(d) values) for NADPH (0.87 microM), NADP(+) (16 microM), NADH (50 microM), and NAD(+) (100-500 microM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The K(d) values for NAD(+) and NADH are similar to those previously reported with isolated dI, but the K(d) values for NADP(+) and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidized.  相似文献   

17.
Michaelis-Menten kinetics are observed in studies of highly purified bovine adrenal glucose-6-phosphate dehydrogenase at pH8.0 in 0.1 M bicine. The Km for NADP+ is 3.8 muM and for glucose-6-phosphate, 61 muM. At pH 6.9 Km for NADP+ increases to 6.5 muM. The enzyme is inhibited by NADPH both at pH 6.8 and at 8.0 with a Kip of 2.36 muM at pH 8.0. Inhibition is competitive with respect to both substrates implying that addition of substrates is random ordered. The data are also interpreted in terms of "reducing charge", the mole fraction of coenzyme in the reduced form. This appears to be the major mechanism for regulation of the pentose shunt. D-glucose, oxidized by the enzyme at a very slow rate, is also a competitive inhibitor for the natural substrate with a Ki of 0.29 M. Phosphate is a competitive inhibitor for glucose-6-phosphate oxidation but both phosphate and sulfate accelerate glucose oxidation suggesting a common binding site for the two anions and the phosphate of the natural substrate. While binding of ACTH to our enzyme preparations has been observed, we have not been able, in spite of repeated attempts, to demonstrate augmentation of the activity of the enzyme by the addition of ACTH.  相似文献   

18.
The NADPH-dependent reduction of ketopantoate to pantoate, catalyzed by ketopantoate reductase (KPR; EC 1.1.1.169), is essential for the biosynthesis of pantothenate (vitamin B(5)). Here we present the crystal structure of Escherichia coli KPR with NADP(+) bound, solved to 2.1 A resolution. The cofactor is bound in the active site cleft between the N-terminal Rossmann-fold domain and the C-terminal alpha-helical domain. The thermodynamics of cofactor and substrate binding were characterized by isothermal titration calorimetry. The dissociation constant for NADP(+) was found to be 6.5 muM, 20-fold larger than that for NADPH (0.34 muM). The difference is primarily due to the entropic term, suggesting favorable hydrophobic interactions of the more lipophilic nicotinamide ring in NADPH. Comparison of this binary complex structure with the previously studied apoenzyme reveals no evidence for large domain movements on cofactor binding. This observation is further supported both by molecular dynamics and by calorimetric analysis. A model of the ternary complex, based on the structure presented here, provides novel insights into the molecular mechanism of enzyme catalysis. We propose a conformational switch of the essential Lys176 from the "resting" state observed in our structure to an "active" state, to bind ketopantoate. Additionally, we identify the importance of Asn98 for substrate binding and enzyme catalysis.  相似文献   

19.
Neurospora glutamate dehydrogenase (NADP-specific) is rapidly inactivated upon reaction with tetranitromethane. This inactivation is completely prevented by the presence of coenzyme (NADP) or nicotinamide mononucleotide (NMN) but not by substrate. NADH, or 2'-monophosphoadenosine-5'-diphosphoribose. Amino acid analysis indicates that the primary effect of modification is nitration of a single residue of tyrosine per polypeptide chain. We have identified the reactive tyrosine by isolation of a single, uniquely labeled peptide after hydrolysis with trypsin followed by cleavage with cyanogen bromide. The modified residue proved to be tyrosine-168 in the linear sequence. This residue is not present in the part of the sequence that had been previously implicated as involved in the binding of the adenylate portion of the coenzyme. Both NMN and 2-monophosphoadenosine-5'-diphosphoribose act as competitive inhibitors of NADP in the oxidation of glutamate with Ki values of 4.65 x 10(-4) M and 4.30 x 10(-4) M, respectively. Thus, the specific protection afforded by NADP and NMN, but not by 2'-monophosphoadenosine-5'-diphosphoribose, indicates that tyrosine-168 is involved in binding the nicotinamide portion of the coenzyme.  相似文献   

20.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号