首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testosterone is important in mediating investment in competing activities such as territoriality, parental care, and maintenance behavior. Most studies of testosterone function have focused on temperate species and less is known about the role of testosterone in territoriality or variation in mating systems of tropical species. Results of studies of tropical species with year‐round territoriality indicate that territorial aggression during the non‐breeding season is maintained with low levels of testosterone, and increased levels of testosterone in males during the breeding season may increase mating opportunities or aid in competition for mates. We studied seasonal variation in testosterone levels of male Red‐throated Ant‐tanagers (Habia fuscicauda), a socially monogamous species with year‐round territoriality and with high levels of extra‐pair matings (41% of young), to determine if testosterone levels increased during the breeding season. We captured males during the non‐breeding and breeding seasons and collected blood samples for hormone analysis. We found that mean testosterone concentrations were low during the non‐breeding season (0.18 ± 0.05 [SD] ng/ml, range = 0.11–0.31 ng/ml), and significantly higher during the breeding season (2.37 ± 2.47 ng/ml, range = 0.14–6.28 ng/ml). Testosterone levels of breeding males were not related to aggression levels as measured by attack rates toward a stuffed decoy or singing rates during simulated territorial intrusions. These results suggest that the higher testosterone levels of breeding male Red‐throated Ant‐tanagers may be important in an extra‐pair mating context, possibly in display behavior or mate attraction, but additional study is needed to clarify the role of testosterone during the breeding season.  相似文献   

2.
In many birds and mammals, male territorial aggression is modulated by elevated circulating concentrations of the steroid hormone testosterone (T) during the breeding season. However, many species are territorial also during the non-breeding season, when plasma T levels are basal. The endocrine control of non-breeding territorial aggression differs considerably between species, and previous studies on wintering birds suggest differences between migratory and resident species. We investigated the endocrine modulation of territorial aggression during the breeding and non-breeding season in a resident population of European stonechats (Saxicola torquata rubicola). We recorded the aggressive response to a simulated territorial intrusion in spring and winter. Then, we compared the territorial aggression between seasons and in an experiment in which we blocked the androgenic and estrogenic action of T. We found no difference in the aggressive response between the breeding and the non-breeding season. However, similarly to what is found in migratory stonechats, the hormonal treatment decreased aggressive behaviors in resident males in the breeding season, whereas no effects were recorded in the non-breeding season. When we compared the aggressive responses of untreated birds with those obtained from migratory populations in a previous study, we found that territorial aggression of resident males was lower than that of migratory males during the breeding season. Our results show that in a resident population of stonechats T and/or its metabolites control territorial aggression in the breeding but not in the non-breeding season. In addition, our study supports the hypothesis that migratory status does modulate the intensity of aggressive behavior.  相似文献   

3.
In birds, territorial aggression during the breeding season is regulated by testosterone (T). However, many bird species also express aggressive behavior during the nonbreeding season, when plasma levels of T are low. It has been suggested that during this period estrogens might play a major role in regulating territorial aggression. In the present study we compared the effects of simultaneous blockage of androgenic and estrogenic actions on territorial aggression during the breeding and nonbreeding seasons in free-living male European stonechats (Saxicola torquata rubicola). European stonechats are of particular interest since they establish territories and form pairs during both the breeding and the nonbreeding seasons. Thus territorial aggression and its endocrine control can be compared between reproductive and non-reproductive contexts. Inhibition of androgenic and estrogenic actions by simultaneous application of Flutamide and ATD reduced territorial aggression during the breeding season, but not during the nonbreeding season. Our results show that androgens and/or estrogens are involved in the endocrine control of territorial aggression in stonechats only in a reproductive context, but not in a non-reproductive one.  相似文献   

4.
Territorial aggression, displayed by male vertebrates in a reproductive context, is generally thought to be mediated by testosterone. The challenge hypothesis predicts that in socially monogamous species, territorial challenges should induce an increase in plasma testosterone concentrations, which will enhance aggressive behaviour and territory defence. This hypothesis is based on northern latitude birds and needs to be tested in tropical birds before it can be universally accepted. We tested the challenge hypothesis in an equatorial population of rufous-collared sparrows in Papallacta, Ecuador. This population shows an extended breeding period during which males aggressively guard territories. During the early breeding season, males were challenged with conspecific or heterospecific simulated territorial intrusions (STIs) lasting 10 min. Conspecific-challenged males responded more aggressively than heterospecific-challenged males. However, there was no increase in plasma testosterone in response to the conspecific STI. During the breeding season, males were challenged with conspecific STIs lasting 0, 10 or 30 min. Males behaved aggressively regardless of STI duration, and did not differ in plasma testosterone or luteinizing hormone concentrations. During the breeding season, males were implanted with testosterone-filled or empty silastic tubes and subsequently challenged with a conspecific STI. Testosterone implants significantly raised plasma testosterone concentrations, but testosterone-implanted males were not more aggressive than blank-implanted controls. Combined, these findings suggest that testosterone concentrations above breeding baseline are not related to territorial aggression in this population and therefore do not support the challenge hypothesis.  相似文献   

5.
We studied a population of rufous whistlers, Pachycephala rufiventris, throughout a single breeding season in central New South Wales, Australia. We evaluated the relation between plasma testosterone (T) and reproductive behaviors using both simulated territorial intrusions (STIs) and subcutaneous T implants. We compared circulating T values to aggression levels of males (using STI) during pair bond and territory establishment and again during incubation. Although plasma T levels were significantly lower in the latter period, male responsiveness to STI, in terms of proximity to decoy, call rate, and number of attacks on the decoy, was indistinguishable between the two breeding stages. T levels of males exposed to STI were not different from the levels of unexposed free-living males at the same breeding stage. The effect of exogenous T on parental behavior was examined by comparing duration of incubation bouts of males and their mates prior to and after T treatment. T males significantly reduced the amount of time they incubated following implantation, whereas Control males maintained their incubation effort. After cessation of breeding activities, T males displayed significantly higher call rates due to increased use of the primary intersexual advertisement call in this species. The reduction of incubation behavior following T implantation emphasises the functional significance of the rapid decline in T in free-living males during incubation. The results from both experiments suggest that intersexual advertisement, rather than territorial aggression, may be dependent on high T levels in this species.  相似文献   

6.
Northern-temperate male birds show seasonal changes in testosterone concentrations with a peak during the breeding season. Many tropical birds express much lower concentrations of testosterone with slight elevations during breeding. Here we describe testosterone and corticosterone concentrations of male stonechats from equatorial Kenya during different substages of breeding and molt. This tropical species has a short breeding season of approximately 3 months. We compare their hormone concentrations to previously published data of males of a northern-temperate relative, the European stonechat, also a seasonal breeder but with a breeding season of approximately 5 months. Equatorial stonechats show a pronounced peak of testosterone during the nest-building and laying stage. During all other stages, testosterone concentrations are low, similar to other year-round territorial tropical bird species. Corticosterone concentrations peak also during the nest-building and laying stage suggesting that this period of maximum female fecundity is a demanding period for the male. Equatorial stonechats have significantly lower concentrations of testosterone than European stonechats during all stages, except during the nest-building and laying stage. During this stage of maximum female fertility, testosterone levels tend to be higher in equatorial than in European stonechats. Our results suggest that equatorial stonechats belong to a group of tropical bird species that are characterized by a short breeding season and a brief high peak of testosterone during the female's fertile period. Such brief, but substantial peaks of testosterone may be common in tropical birds, but they may easily be missed if the exact breeding stage of individual birds is not known.  相似文献   

7.
The hormonal control of territorial aggression in male and female vertebrates outside the breeding season is still unresolved. Most vertebrates have regressed gonads when not breeding and do not secrete high levels of sex steroids. However, recent studies implicate estrogens in the regulation of non-breeding territoriality in some bird species. One possible source of steroids during the non-breeding season could be the adrenal glands that are known to produce sex steroid precursors such as dehydroepiandrosterone (DHEA). We studied tropical, year-round territorial spotted antbirds (Hylophylax n. naevioides) and asked (1). whether both males and females are aggressive in the non-breeding season and (2). whether DHEA is detectable in the plasma at that time. We conducted simulated territorial intrusions (STIs) with live decoys to male and female free-living spotted antbirds in central Panama. Non-breeding males and females displayed robust aggressive responses to STIs, and responded more intensely to decoys of their own sex. In both sexes, plasma DHEA concentrations were detectable and higher than levels of testosterone (T) and 17beta-estradiol (E(2)). In males, plasma DHEA concentrations were positively correlated with STI duration. Next, we conducted STIs in captive non-breeding birds. Captive males and females displayed robust aggressive behavior. Plasma DHEA concentrations were detectable in both sexes, whereas T was non-detectable (E(2) was not measured). Plasma DHEA concentrations of males were positively correlated with aggressive vocalizations and appeared to increase with longer STI durations. We conclude that male and female spotted antbirds can produce DHEA during the non-breeding season and DHEA may serve as a precursor of sex steroids for the regulation of year-round territorial behavior in both sexes.  相似文献   

8.
Plasma testosterone increases during breeding in many male vertebrates and has long been implicated in the promotion of aggressive behaviors relating to territory and mate defense. Males of some species also defend territories outside of the breeding period. For example, the European nuthatch (Sitta europaea) defends an all-purpose territory throughout the year. To contribute to the growing literature regarding the hormonal correlates of non-breeding territoriality, we investigated the seasonal testosterone and corticosterone profile of male (and female) nuthatches and determined how observed hormone patterns relate to expression of territorial aggression. Given that non-breeding territoriality in the nuthatch relates to the reproductive context (i.e., defense of a future breeding site), we predicted that males would exhibit surges in plasma testosterone throughout the year. However, we found that males showed elevated testosterone levels only during breeding. Thus, testosterone of gonadal origin does not appear to be involved in the expression of non-breeding territoriality. Interestingly, territorial behaviors of male nuthatches were stronger in spring than in autumn, suggesting that in year-round territorial species, breeding-related testosterone elevations may upregulate male-male aggression above non-breeding levels. In females, plasma testosterone was largely undetectable. We also examined effects of simulated territorial intrusions (STIs) on testosterone and corticosterone levels of breeding males. We found that STIs did not elicit a testosterone response, but caused a dramatic increase in plasma corticosterone. These data support the hypothesis that corticosterone rather than testosterone may play a role in the support of behavior and/or physiology during acute territorial encounters in single-brooded species.  相似文献   

9.
Mockingbirds normally secrete little or no testosterone during the period of autumnal territoriality. To determine the behavioral effects of exogenously administered testosterone, 20-mm lengths of Silastic tubing filled with crystalline testosterone were implanted into free-living resident mockingbirds during the autumn. Control residents were given sealed empty implants. Focal animal sampling showed that T-implanted males sang significantly more than controls. Perhaps as a consequence, a significantly greater percentage of the T-implanted males acquired mates. Though nest building does not naturally occur in autumn, T-implanted males also showed significantly more nest building than control males. However, T-implanted males only built if there was a female in the territory, suggesting a synergy between the presence of testosterone and social cues provided by the female. Examination of the effects of testosterone on territorial aggression showed that despite the high levels of territorial activity common in this species in autumn, territorial fights were unaffected by the presence of testosterone. One aggressive call, known to function in fall territorial defense, was significantly decreased in T-implanted versus control males. The presence of fall testosterone appears to stimulate a number of reproductive activities in mockingbirds, leaving autumnal aggressive interactions either unchanged or decreased. We discuss the application of these data to the effects of testosterone on the mockingbird's reproductive behavior during the breeding season.  相似文献   

10.
Vertebrates show a diverse array of social behaviors associatedwith territoriality. Field and laboratory experiments indicatethat underlying themes—including mechanisms—mayexist. For example in birds, extensive evidence over many decadeshas implicated a role for testosterone in the activation ofterritorial aggression in reproductive contexts. Territorialityat other times of the year appeared to be independent of gonadalhormone control. One obvious question is—why this diversityof control mechanisms for an apparently similar behavior? Controlof testosterone secretion during the breeding season must balancethe need to compete with other males (that tends to increasetestosterone secretion), and the need to provide parental care(that requires lower testosterone concentrations). Regulationof aggressive behaviors by testosterone in the non-breedingseason may incur substantial costs. A series of experimentson the male song sparrow, Melospiza melodia morphna, of westernWashington State have revealed possible mechanisms to avoidthese costs. Song sparrows are sedentary and defend territoriesin both breeding and non-breeding seasons. Dominance interactions,territorial aggression and song during the non-breeding seasonare essentially identical to those during the breeding season.Although in the non-breeding season plasma testosterone andestradiol levels are very low, treatment with an aromatase inhibitordecreases aggression and simultaneous implantation of estradiolrestores territorial behavior. These data suggest that the mechanismby which testosterone regulates territorial behavior at theneural level remains intact throughout the year. How the hormonalmessage to activate such behavior gets to the brain in differentseason does, however, appear to be different.  相似文献   

11.
The breeding season is very brief for arctic-breeding passerines, and any interruptions of parental care by aggressive interactions over territory may reduce reproductive success. We tested both the "testosterone insensitivity" and "corticosterone insensitivity" hypotheses in the arctic-breeding Gambel's white-crowned sparrow, Zonotrichia leucophrys gambelii. Additionally, we tested whether simulated territorial intrusions (STIs), known to stimulate increases in luteinizing hormone (LH) and testosterone (T) in mid-latitude breeding Z. l. pugetensis, would also be effective in either the early or late phases of the brief breeding season of Z. l. gambelii. Plasma levels of T and LH were high early in the breeding season and declined as egg laying began. Exposure of free-living males to 10 min of STI significantly increased LH but not T secretion. Nonetheless, the pituitary-gonadal axis is sensitive as jugular injection of gonadotrophin-releasing hormone increased plasma T at 10 min relative to saline-challenged controls. T implants failed to increase territorial aggression following STI during incubation. These data are consistent with the T insensitivity hypothesis and contrast sharply with the response of the southerly breeding subspecies, Z. l. pugetensis, in which the territorial response to T administration is retained throughout its relatively long breeding season. However, corticosterone implants during the incubation period decreased territorial aggression during STI. This responsiveness to corticosterone is not consistent with the corticosterone insensitivity hypothesis of stress modulation. Z. l. gambelii retain sensitivity to corticosterone levels that may occur naturally in response to environmental perturbations resulting in suppression of territorial behavior.  相似文献   

12.
The Fox Sparrows, Passerella iliaca, include multiple groups and subspecies distributed at several latitudes from the Alaskan arctic to the southwestern United States. As such, this species represents a potential model for investigating latitudinal variation in androgen secretion and aggressive territoriality in male passerines. Breeding male Fox Sparrows from two subspecies within two groups, the Sooty Fox Sparrow, P. i. sinuosa, and the Red Fox Sparrow, P. i. zaboria, were assessed for aggressive territoriality and androgen responsiveness at multiple latitudes in arctic and subarctic Alaska. Subarctic Sooty Fox Sparrows had higher circulating androgen levels in the early (8.54 ng/ml) versus mid–late breeding season (2.44 ng/ml). Males in the mid–late breeding season did not up-regulate androgen secretion in response to social challenge, but were aggressive and spent more time within 5 m of a decoy during a simulated territorial intrusion (STI) than early breeding males. Male subarctic Red Fox Sparrows had slightly higher circulating androgen levels (2.29 ng/ml) than arctic males (1.10 ng/ml) in the mid–late breeding season. However, androgen levels were not correlated with blood collection time after a social challenge in either group, suggesting that neither arctic nor subarctic males up-regulate androgen secretion during the mid–late breeding period. Arctic males spent more time within 5 m of a decoy and sang less than subarctic males during an STI in the mid–late breeding season. These findings demonstrate that the Fox Sparrow is a tractable model for investigating the latitudinal regulation of aggressive territoriality and androgen responsiveness in passerines.  相似文献   

13.
Male robins aggressively defending a feeding territory in winter have low levels of testosterone, while males defending a breeding territory in spring have elevated levels of testosterone. Song is an integrated part of territorial defense during both phases. We investigated whether testosterone is involved in the expression of these behaviors by treating free-living and captive male robins during both phases with the antiandrogen flutamide. Results suggest that, similar to species in which territoriality is restricted to the reproductive phase, aggressive defense of a breeding territory by male robins is facilitated by androgens. Territorial defense during the nonbreeding season, however, does not require androgenic activity. Singing frequency, on the other hand, was not significantly reduced during either phase by flutamide application. Since the quality of male song changes with season we suggest that the incorporation of sexual signals into male song during breeding depends on testosterone, but that the year-round production of territorial "keep out" signals is independent of testosterone.  相似文献   

14.
During the nonbreeding season, when gonadal androgen synthesis is basal, recent evidence suggests that neurosteroids regulate the aggression of male song sparrows. In particular, dehydroepiandrosterone (DHEA) is rapidly converted in the brain to androgens in response to aggressive interactions. In other species, aggressive encounters increase systemic glucocorticoid levels. However, the relationship between aggression and local steroid levels is not well understood. Here, during the breeding and nonbreeding seasons, we tested the effects of a simulated territorial intrusion (STI) on DHEA and corticosterone levels in the brachial and jugular plasma. Jugular plasma is enriched with neurosteroids and provides an indirect index of brain steroid levels. Further, during the nonbreeding season, we directly measured steroid levels in the brain and peripheral tissues. Both breeding and nonbreeding males displayed robust aggressive responses to STI. During the breeding season, STI increased brachial and jugular corticosterone levels and jugular DHEA levels. During the nonbreeding season, STI did not affect plasma corticosterone levels, but increased jugular DHEA levels. During the nonbreeding season, STI did not affect brain levels of corticosterone or DHEA. However, STI did increase corticosterone and DHEA concentrations in the liver and corticosterone concentrations in the pectoral muscle. These data suggest that 1) aggressive social interactions affect neurosteroid levels in both seasons and 2) local steroid synthesis in peripheral tissues may mobilize energy reserves to fuel aggression in the nonbreeding season. Local steroid synthesis in brain, liver or muscle may serve to avoid the costs of systemic increases in corticosterone and testosterone.  相似文献   

15.
The longnose filefish,Oxymonacanthus longirostris, usually lives in heterosexual pairs, the male and female swimming together and sharing the same territory. Pair territoriality in the species was examined in detail in relation to sexual differences in territorial defense activities. Rigorous pair territoriality was maintained only during the breeding season, although pairs used their home ranges exclusively to a certain extent, during the non-breeding season. The frequency of aggression against other conspecific pairs in the breeding season was higher than in the non-breeding season. Agonistic interactions appear to be over both mates and food resources, the strict pair territoriality in the breeding season possibly being due to mutual mate guarding. In intraspecific aggressive interactions, males usually led their partner females when attacking intruders. The feeding frequency of males was much lower than that of females in the breeding season. Mate removal experiments indicated that females could not defend their original territories solitarily and their feeding frequency decreased. Conversely, males could defend territories solitarily without a decrease in feeding frequency. These results suggest that males contribute most to the defense of the pair territory, with females benefiting from territorial pair-swimming with their partner males.  相似文献   

16.
Many studies have demonstrated that male aggression is regulated by testosterone. The conversion of testosterone to estradiol by brain aromatase is also known to regulate male aggression in the breeding season. Male song sparrows (Melospiza melodia morphna) are territorial not only in the breeding season, but also in the nonbreeding season, when plasma testosterone and estradiol levels are basal. Castration has no effect on nonbreeding aggression. In contrast, chronic (10 day) aromatase inhibitor (fadrozole) treatment decreases nonbreeding aggression, indicating a role for estrogens. Here, we show that acute (1 day) fadrozole treatment decreases nonbreeding territoriality, suggesting relatively rapid estrogen effects. In spring, fadrozole decreases brain aromatase activity, but acute and chronic fadrozole treatments do not significantly decrease aggression, although trends for some behaviors approach significance. In gonadally intact birds, fadrozole may be less effective at reducing aggression in the spring. This might occur because fadrozole causes a large increase in plasma testosterone in intact breeding males. Alternatively, estradiol may be more important for territoriality in winter than spring. We hypothesize that sex steroids regulate male aggression in spring and winter, but the endocrine mechanisms vary seasonally.  相似文献   

17.
We investigated territorial behavior and circulating testosterone (T) levels in a multiple-brooded population of the European stonechat, a socially monogamous passerine bird with biparental care. Between arrival at and departure from the breeding territories, we (1) quantified behavior of both sexes in response to a simulated territorial intrusion (STI) of a male conspecific and (2) measured plasma T concentrations in males and females. Male response scores to a STI and male T concentrations varied with phase, but there was no temporal association between plasma T levels and the intensity of territorial behavior. During both two sexual and two parental phases, at least half of the tested males showed aggressive responses. About 20% of the tested males responded with courtship prior to laying of the first clutch, but none of the males courted during later phases. Age had a positive overall effect on male plasma T. Females also reacted to the STI of a male, but their responses did not vary with breeding phase. Female plasma T varied with phase, being elevated during production of the first but not of the second clutch. As with males, female responses to the STI were not correlated with T levels. Responses of pair partners were positively correlated with each other. We conclude that modulation of male territorial aggression with breeding phase is not regulated by changes of plasma T concentrations. In light of other studies showing reduced male aggression by pharmacological inhibition of cellular actions of T, we propose that T is permissive for male territorial aggression, but does not mediate short-term changes associated with breeding phase. The function of the high female plasma T concentrations during formation of first clutches could be related to the production of eggs with high concentrations of androgens.  相似文献   

18.
Extensive research has focused on territorial aggression during the breeding season and the roles of circulating testosterone (T) and its conversion to 17beta-oestradiol (E2) in the brain. However, many species also defend territories in the non-breeding season, when circulating T-levels are low. The endocrine control of non-breeding territoriality is poorly understood. The male song sparrow of Washington State is highly territorial year-round, but plasma T is basal in the non-breeding season (autumn and winter). Castration has no effect on aggression in autumn, suggesting that autumnal territoriality is independent of gonadal hormones. However, non-gonadal sex steroids may regulate winter territoriality (e.g. oestrogen synthesis by brain aromatase). In this field experiment, we treated wild non-breeding male song sparrows with a specific aromatase inhibitor (fadrozole, FAD) using micro-osmotic pumps. FAD greatly reduced several aggressive behaviours. The effects of FAD were reversed by E2 replacement. Treatment did not affect body condition or plasma corticosterone, suggesting that all subjects were healthy These data indicate that E2 regulates male aggression in the non-breeding season and challenge the common belief that aggression in the non-breeding season is independent of sex steroids. More generally, these results raise fundamental questions about how sexual and/or aggressive behaviours are maintained in a variety of model vertebrate species despite low circulating levels of sex steroids or despite castration. Such non-classical endocrine mechanisms may be common among vertebrates and play an important role in the regulation of behaviour.  相似文献   

19.
The challenge hypothesis (Wingfield et al. in Am Nat 136:829–846, 1990) predicts that circulating testosterone increases when socially monogamous male birds are challenged during breeding. Although the challenge hypothesis has been confirmed in large-scale interspecific comparisons of seasonal hormone profiles, experimental tests of the challenge hypothesis are still uncommon and the results equivocal. We tested one of the predictions of the challenge hypothesis by investigating the behavioural and hormonal response of free-living European robins during simulated territorial intrusions (STIs) in the breeding season. We conducted STIs by placing a stuffed decoy in a territory and playing robin song. After the behaviour of the focal male had been recorded for at least 10 min, it was captured and a blood sample was taken immediately. Controls were caught within 10 min of the first response of the territory owner. Hormone concentrations were measured by radio-immunoassay. Although previous studies have shown that testosterone has an impact on aggression, European robins do not respond to STIs by increasing circulating levels of testosterone.  相似文献   

20.
Testosterone promotes aggressive behaviour in male vertebrates during the breeding season, but the importance of testosterone in female aggression remains unclear. Testosterone has both beneficial and detrimental effects on behaviour and physiology, prompting the hypothesis that selection favours an association between aggression and testosterone only in certain contexts in which intense or persistent aggression may be beneficial. We tested this hypothesis in a year-round territorial female buff-breasted wrens (Thryothorus leucotis), by exposing free-living females to experimental intrusions in different social (either single female or male, or paired decoys) and seasonal (pre-breeding or breeding) contexts. Females responded more aggressively to intrusions by females and pairs than to males. However, female intrusions elicited stronger responses during pre-breeding, whereas responses to pair intrusions were more intense during breeding. Territorial females had elevated testosterone levels after female intrusions and intermediate levels after pair intrusions during pre-breeding, but the levels of testosterone remained low after these intrusions during breeding. These results demonstrate seasonal differences in circulating testosterone following territorial aggression in female buff-breasted wrens and are suggestive of differences according to social context as well. Context-dependent elevation of testosterone implies that selection acts directly on female vertebrates to shape patterns of testosterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号