首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background

Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host’s nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography – mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies.

Results

All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays.

Conclusions

While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.

  相似文献   

3.
We report on juvenile hormone (JH) biosynthesis from long‐chain intermediates by specific reproductive tissues and the corpora allata (CA) prepared from adult longhorned beetles, Apriona germari. The testes, male accessory glands (MAGs), ovaries, and CA contained the long‐chain intermediates in the JH biosynthetic pathway, farnesoic acid (FA), methyl farnesoate (MF), and JH III. The testes and ovaries, but not CA, produced radioactive JH III after the addition of 3H‐methionine and, separately, unlabeled methionine, to the incubation medium. We inferred that endogenous FA is methylated to MF in the testes and ovaries. Addition of farnesol led to increased amounts of FA in the testes, MAGs, ovaries, and CA, indicating oxidation of farnesol to FA. Addition of FA to incubation medium yielded increased JH III, again indicating methylation of FA to MF in the testes, MAGs, ovaries, but not CA. Addition of MF to incubation medium also led to JH III, from which we inferred the epoxidation of MF to JH III. JH biosynthesis from farnesol in the testes, MAGs, and ovaries of A. germari proceeds via oxidation to FA, methylation to MF, and epoxidation to JH III. This is a well‐known pathway to JH III, described here for the first time in reproductive tissues of longhorned beetles. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
The accessory reproductive glands of male mammals contribute the bulk of the secretions in which spermatozoa are transported to the female tract during copulation. Despite their morphological diversity,and the chemical complexity of their products,little is known about the possible effects of sexual selection upon these glands in mammals. Here we consider the seminal vesicles and prostate glands in a sample of 89 species and 60 genera representing 8 Orders of mammals. The sizes of the accessory glands are analysed in relation to body weight and testes weight. Both the seminal vesicles size and prostate size (corrected for body weight) correlate positively with relative testes size in this sample; this finding remains highly significant after application of procedures to correct for possible phylogenetic biases in the data set. The accessory reproductive glands are also significantly larger in those mammals which have large relative testes sizes,and in which the likelihood of sperm competition is greatest. These results support the hypothesis that sexual selection has played an important role in the evolution of the mammalian prostate gland and seminal vesicles.  相似文献   

5.
Anatomically the male reproductive organs of Hemiechinus auritus collaris are of considerable interest and present a unique pattern of arrangement of different glands. The testes are inguinal and a true scrotum is absent. A pair of accessory glands, the seminal vesicles, are situated dorsal to the bladder. A pair of obviously lobulated glands, ventral to the bladder, represent the internal prostate and a pair of compact glands situated outside the pelvis in para-anal position the external prostate. The Cowper's gland and the gland of ampulla are absent. The present studies also concern enzymes of the phosphatase group, including both specific and non-specific phosphatases, in the testes and the sex accessory glands during both active and inactive periods in this insectivore.  相似文献   

6.

Background

Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host’s nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography – mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies.

Results

All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays.

Conclusions

While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.
  相似文献   

7.
The tick species Amblyomma cajennense is of great medical importance, as it is the vector of the Rickettsia rickettsii, agent of Rocky Mountain spotted fever. The objective of this study was to perform a morphological and histological analysis of the male reproductive system of fed and unfed A. cajennense. The male reproductive system is formed by a pair of tubular testes dorsolaterally arranged in opisthosoma. They were divided into three regions: proximal region (next to vas deferens), median region and distal region (nearest to the blind ending of testis). Proximal regions are connected to the seminal vesicles by the deferent ducts and to accessory glands, similar to what was observed for other Ixodidae. Feeding plays a fundamental role in the development of the reproductive system, as in unfed individuals, the testes, the seminal vesicles and the accessory glands were smaller comparing with the fed individuals. In addition, the prospermia, precursors of the spermatozoa, were only observed in fed individuals. The germ cells were organized in spermatocysts, enveloped by a connective tissue. The cells in more advanced stages of spermatogenesis were localized in the distal region, in accord with studies in other ticks, but opposite to what was observed for other arthropods.  相似文献   

8.
Summary

Codakia orbicularis is a tropical lucinid harboring gill endosymbionts which are environmentally transmitted from a free living-symbiont form to the new host generation after metamorphosis. Structural changes occurring in the cellular organization from incomplete gill filaments in young aposymbiotic juveniles to full differentiated gill filaments containing bacterial endosymbionts in reared symbiotic juveniles, were analyzed for juveniles from 250 μm to 2 μm shell-length. Aposymbiotic juveniles possess differentiated gill filaments with ciliated, intermediary, and lateral zones similar to those described in wild juveniles, except for the bacteriocytes which are lacking. Granule cells, which progressively differentiate during the morphogenesis of the gill filament, do not appear as a consequence of symbiosis. Experimental colonization of aposymbiotic juveniles by the free-living symbiont form has been obtained through the addition of unsterilized sand collected from the natural habitat of C. orbicularis. Two days after exposure to crude sand, symbiosis-competent bacteria enter by endocytosis at the apical pole of undifferentiated cells which progressively differentiate into classical bacteriocytes similar to those found in the adult gill filaments. Undifferentiated cells of aposymbiotic gill filaments remain receptive to bacteria several months after metamorphosis, and become bacteriocytes when aposymbiotic juveniles get contact with the symbiont free-living form. Therefore, the environmental transmission of symbionts does not appear to be restrained to a defined period of time during post-larval development in C. orbicularis.  相似文献   

9.
Male accessory gland proteins (Acps) act as key modulators of reproductive success in insects by influencing the female reproductive physiology and behavior. We used custom microarrays and identified 112 genes that were highly expressed in male accessory glands (MAG) in the red flour beetle, Tribolium castaneum. Out of these 112 identified genes, 59 of them contained sequences coding for signal peptide and cleavage site and the remaining 53 contained transmembrane domains. The expression of 14 of these genes in the MAG but not in other tissues of male or female was confirmed by quantitative real-time PCR. In virgin males, juvenile hormone (JH) levels increased from second day post adult emergence (PAE), remained high on third day PAE and declined on fourth day PAE. The ecdysteroid titers were high soon after adult emergence but declined to minimal levels from 1 to 5 days PAE. Feeding of juvenile hormone analog, hydroprene, but not the ecdysteroid analog, RH-2485, showed an increase in size of MAGs, as well as an increase in total RNA and protein content of MAG. Hydroprene treatment also increased the expression of Acp genes in the MAG. RNAi-mediated knock-down in the expression of JHAMT gene decreased the size of MAGs and expression of Acps. JH deficiency influenced male reproductive fitness as evidenced by a less vigor in mating behavior, poor sperm transfer, low egg and the progeny production by females mated with the JH deficient males. These data suggest a critical role for JH in the regulation of male reproduction especially through MAG secretions.  相似文献   

10.
Background

Tsetse flies (Glossina sp.) refractory to trypanosome infection are currently being explored as potential tools to contribute in the control of human and animal African trypanosomiasis. One approach to disrupt trypanosome transmission by the tsetse fly vector involves the use of paratransgenesis, a technique that aims to reduce vector competence of disease vectors via genetic modification of their microbiota. An important prerequisite for developing paratransgenic tsetse flies is the stable repopulation of tsetse flies and their progeny with its genetically modified Sodalis symbiont without interfering with host fitness.

Results

In this study, we assessed by qPCR analysis the ability of a chromosomally GFP-tagged Sodalis (recSodalis) strain to efficiently colonize various tsetse tissues and its transmission to the next generation of offspring using different introduction approaches. When introduced in the adult stage of the fly via thoracic microinjection, recSodalis is maintained at high densities for at least 21 days. However, no vertical transmission to the offspring was observed. Oral administration of recSodalis did not lead to the colonization of either adult flies or their offspring. Finally, introduction of recSodalis via microinjection of third-instar larvae resulted in stably colonized adult tsetse flies. Moreover, the subsequent generations of offspring were also efficiently colonized with recSodalis. We show that proper colonization of the female reproductive tissues by recSodalis is an important determinant for vertical transmission.

Conclusions

Intralarval microinjection of recSodalis proves to be essential to achieve optimal colonization of flies with genetically modified Sodalis and its subsequent dissemination into the following generations of progeny. This study provides the proof-of-concept that Sodalis can be used to drive expression of exogenous transgenes in Glossina morsitans morsitans colonies representing a valuable contribution to the development of a paratransgenic tsetse fly based control strategy.

  相似文献   

11.
The fine structure of the seminal vesicle and reproductive accessory glands was investigated in Bittacidae of Mecoptera using light and transmission electron microscopy. The male reproductive system of Bittacidae mainly consists of a pair of testes, a pair of vasa deferentia, and an ejaculatory sac. The vas deferens is greatly expanded for its middle and medio-posterior parts to form a well-developed seminal vesicle. The seminal vesicle is composed of layers of developed muscles and a mono-layered epithelium surrounding the small central lumen. The epithelium is rich in rough endoplasmic reticulum and mitochondria, and secretes vesicles and granules into the central lumen by merocrine mechanisms. A pair of elongate mesodermal accessory glands opens into the lateral side of the seminal vesicles. The accessory glands are similar to the seminal vesicle in structure, also consisting of layers of muscle fibres and a mono-layered elongated epithelium, the cells of which contain numerous cisterns of rough endoplasmic reticulum and mitochondria, and a few Golgi complexes. The epithelial cells of accessory glands extrude secretions via apocrine and merocrine processes. The seminal vesicles mainly serve the function of secretion rather than temporarily storing spermatozoa. The sperm instead are temporarily stored in the epididymis, the greatly coiled distal portion of the vas deferens.  相似文献   

12.
The viviparous tsetse fly utilizes proline as a hemolymph-borne energy source. In tsetse, biosynthesis of proline from alanine involves the enzyme alanine-glyoxylate aminotransferase (AGAT), which requires pyridoxal phosphate (vitamin B6) as a cofactor. This vitamin can be synthesized by tsetse''s obligate symbiont, Wigglesworthia glossinidia. In this study, we examined the role of Wigglesworthia-produced vitamin B6 for maintenance of proline homeostasis, specifically during the energetically expensive lactation period of the tsetse''s reproductive cycle. We found that expression of agat, as well as genes involved in vitamin B6 metabolism in both host and symbiont, increases in lactating flies. Removal of symbionts via antibiotic treatment of flies (aposymbiotic) led to hypoprolinemia, reduced levels of vitamin B6 in lactating females, and decreased fecundity. Proline homeostasis and fecundity recovered partially when aposymbiotic tsetse were fed a diet supplemented with either yeast or Wigglesworthia extracts. RNA interference-mediated knockdown of agat in wild-type flies reduced hemolymph proline levels to that of aposymbiotic females. Aposymbiotic flies treated with agat short interfering RNA (siRNA) remained hypoprolinemic even upon dietary supplementation with microbial extracts or B vitamins. Flies infected with parasitic African trypanosomes display lower hemolymph proline levels, suggesting that the reduced fecundity observed in parasitized flies could result from parasite interference with proline homeostasis. This interference could be manifested by competition between tsetse and trypanosomes for vitamins, proline, or other factors involved in their synthesis. Collectively, these results indicate that the presence of Wigglesworthia in tsetse is critical for the maintenance of proline homeostasis through vitamin B6 production.  相似文献   

13.
14.
Ecdysteroid titers were determined in tissues (gut plus Malpighian tubules, carcass tissue, fat body, muscles, haemolymph, accessory reproductive glands, and testes) of male adult crickets, Gryllus bimaculatus, during the first 20 days of adult life as well as in spermatophores. In all tissues, except testes, total ecdysteroid titers are high on the day of imaginal moulting and then drop more or less continuously until day 8 after moulting. Distinctly higher levels are found on day 12 and 18 as well. Freshly moulted males contain high quantities of polar ecdysteroid conjugates in the digestive tract, testes, accessory reproductive glands, and haemolymph. Apolar ecdysteroid conjugates are mainly detectable in carcass tissue and fat body, but also in the haemolymph during entire adulthood. Free ecdysteroids represent the domineering class of moulting hormones in the gut during all stages of adult life. The significance of cycling ecdysteroid concentrations during adulthood is discussed in relation to spermatophore production and development of male accessory reproductive glands.  相似文献   

15.
Virgin females of the tsetse fly, Glossina morsitans orientalis, retain their first egg within the right ovary whereas mated females ovulate. The component of the mating act which causes ovulation and thereby initiates the ovarian cycles which follow, is not insemination, the construction of a spermatophore in the uterus, or a humoral factor associated with the testes, accessory glands or ejaculatory ducts of donor males, or ‘full’ spermathecae of donor females. The ovulation rate increases with copulation time and females are shown to ‘add up’ their ‘sexual experience’ independently of that of the males. Inter-specific matings between G. morsitans and G. austeni also result in ovulation, but an unidentified factor associated with the completion of the mating act was also apparent. It is suggested that a ‘mechanical’ factor probably with nervous and endocrine components is responsible for the release of the egg from the ovary. Observations on the construction of empty spermatophores by aspermic males of G. morsitans are included.  相似文献   

16.
Male seminal fluid proteins are known to affect female reproductive behavior and physiology by reducing mating receptivity and by increasing egg production rates. Such substances are also though to increase the competitive fertilization success of males, but the empirical foundation for this tenet is restricted. Here, we examined the effects of injections of size-fractioned protein extracts from male reproductive organs on both male competitive fertilization success (i.e., P2 in double mating experiments) and female reproduction in the seed beetle Callosobruchus maculatus. We found that extracts of male seminal vesicles and ejaculatory ducts increased competitive fertilization success when males mated with females 1 day after the females’ initial mating, while extracts from accessory glands and testes increased competitive fertilization success when males mated with females 2 days after the females’ initial mating. Moreover, different size fractions of seminal fluid proteins had distinct and partly antagonistic effects on male competitive fertilization success. Collectively, our experiments show that several different seminal fluid proteins, deriving from different parts in the male reproductive tract and of different molecular weight, affect male competitive fertilization success in C. maculatus. Our results highlight the diverse effects of seminal fluid proteins and show that the function of such proteins can be contingent upon female mating status. We also document effects of different size fractions on female mating receptivity and egg laying rates, which can serve as a basis for future efforts to identify the molecular identity of seminal fluid proteins and their function in this model species.  相似文献   

17.
Sperm competition is a pervasive selective force in evolution, shaping reproductive anatomy, physiology and behaviour. Here, we present comparative evidence that varying sperm competition levels account for variation in the male reproductive anatomy of rodents, the largest and most diverse mammalian order. We focus on the sperm-producing testes and the accessory reproductive glands, which produce the seminal fluid fraction of the ejaculate. We demonstrate a positive association between relative testis size and the prevalence of within-litter multiple paternity, consistent with previous analyses in which relative testis size has been found to correlate with sperm competition levels inferred from social organization and mating systems. We further demonstrate an association between sperm competition level and the relative size of at least two accessory reproductive glands: the seminal vesicles and anterior prostate. The size of the major product of these glands-the copulatory plug-is also found to vary with sperm competition level. Our findings thus suggest that selection for larger plugs under sperm competition may explain variation in accessory gland size, and highlight the need to consider both sperm and non-sperm components of the male ejaculate in the context of post-copulatory sexual selection.  相似文献   

18.
Insect seminal fluid proteins are powerful modulators of many aspects of female physiology and behaviour including longevity, egg production, sperm storage, and remating. The crucial role of these proteins in reproduction makes them promising targets for developing tools aimed at reducing the population sizes of vectors of disease. In the malaria mosquito Anopheles gambiae, seminal secretions produced by the male accessory glands (MAGs) are transferred to females in the form of a coagulated mass called the mating plug. The potential of seminal fluid proteins as tools for mosquito control demands that we improve our limited understanding of the composition and function of the plug. Here, we show that the plug is a key determinant of An. gambiae reproductive success. We uncover the composition of the plug and demonstrate it is formed through the cross-linking of seminal proteins mediated by a MAG-specific transglutaminase (TGase), a mechanism remarkably similar to mammalian semen coagulation. Interfering with TGase expression in males inhibits plug formation and transfer, and prevents females from storing sperm with obvious consequences for fertility. Moreover, we show that the MAG-specific TGase is restricted to the anopheline lineage, where it functions to promote sperm storage rather than as a mechanical barrier to re-insemination. Taken together, these data represent a major advance in our understanding of the factors shaping Anopheles reproductive biology.  相似文献   

19.
Adult reproductive diapause is characterized by lower behavioral activity, ceased reproduction and absence of juvenile hormone (JH). The role of JH receptor Methoprene-tolerant (Met) in female reproduction is well established; however, its function in male reproductive development and behavior is unclear. In the bean bug, Riptortus pedestris, circadian genes are essential for mediating photoperiodically-dependent growth of the male accessory glands (MAGs). The present study explores the role of circadian genes and JH receptor in male diapause in the linden bug, Pyrrhocoris apterus. These data indicate that circadian factors Clock, Cycle and Cry2 are responsible for photoperiod measurement, whereas Met and its partner protein Taiman participate in JH reception. Surprisingly, knockdown of the JH receptor neither lowered locomotor activity nor reduced mating behavior of males. These data suggest existence of a parallel, JH-independent or JH-upstream photoperiodic regulation of reproductive behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号