首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Inflammasomes are multiprotein caspase‐activating complexes that enhance the maturation and release of proinflammatory cytokines (IL‐1β and IL‐18) in response to the invading pathogen and/or host‐derived cellular stress. These are assembled by the sensory proteins (viz NLRC4, NLRP1, NLRP3, and AIM‐2), adaptor protein (ASC), and effector molecule procaspase‐1. In NLRP3‐mediated inflammasome activation, ASC acts as a mediator between NLRP3 and procaspase‐1 for the transmission of signals. A series of homotypic protein‐protein interactions (NLRP3PYD:ASCPYD and ASCCARD:CASP1CARD) propagates the downstream signaling for the production of proinflammatory cytokines. Pyrin‐only protein 1 (POP1) is known to act as the regulator of inflammasome. It modulates the ASC‐mediated inflammasome assembly by interacting with pyrin domain (PYD) of ASC. However, despite similar electrostatic surface potential, the interaction of POP1 with NLRP3PYD is obscured till date. Herein, to explore the possible PYD‐PYD interactions between NLRP3PYD and POP1, a combined approach of protein‐protein docking and molecular dynamics simulation was adapted. The current study revealed that POP1's type‐Ia interface and type‐Ib interface of NLRP3PYD might be crucial for 1:1 PYD‐PYD interaction. In addition to type‐I mode of interaction, we also observed type‐II and type‐III interaction modes in two different dynamically stable heterotrimeric complexes (POP1‐NLRP3‐NLRP3 and POP1‐NLRP3‐POP1). The inter‐residual/atomic distance calculation exposed several critical residues that possibly govern the said interaction, which need further investigation. Overall, the findings of this study will shed new light on hitherto concealed molecular mechanisms underlying NLRP3‐mediated inflammasome, which will have strong future therapeutic implications.  相似文献   

2.
In the innate immune system, the host defense from the invasion of external pathogens triggers the inflammatory responses. Proteins involved in the inflammatory pathways were often found to aggregate into supramolecular oligomers, called ‘inflammasome’, mostly through the homotypic interaction between their domains that belong to the death domain superfamily. Although much has been known about the formation of these helical molecular machineries, the detailed correlation between the dynamics of their assembly and the structure of each domain is still not well understood. Using the filament formed by the PYD domains of adaptor molecule ASC as a test system, we constructed a new multiscale simulation framework to study the kinetics of inflammasome assembly. We found that the filament assembly is a multi-step, but highly cooperative process. Moreover, there are three types of binding interfaces between domain subunits in the ASCPYD filament. The multiscale simulation results suggest that dynamics of domain assembly are rooted in the primary protein sequence which defines the energetics of molecular recognition through three binding interfaces. Interface I plays a more regulatory role than the other two in mediating both the kinetics and the thermodynamics of assembly. Finally, the efficiency of our computational framework allows us to design mutants on a systematic scale and predict their impacts on filament assembly. In summary, this is, to the best of our knowledge, the first simulation method to model the spatial-temporal process of inflammasome assembly. Our work is a useful addition to a suite of existing experimental techniques to study the functions of inflammasome in innate immune system.  相似文献   

3.
A key process underlying an innate immune response to pathogens or cellular stress is activation of members of the NOD-like receptor family, such as NLRP3, to assemble caspase-1-activating inflammasome complexes. Activated caspase-1 processes proinflammatory cytokines into active forms that mediate inflammation. Activation of the NLRP3 inflammasome is also associated with common diseases including cardiovascular disease, diabetes, chronic kidney disease, and Alzheimer disease. However, the molecular details of NLRP3 inflammasome assembly are not established. The adaptor protein ASC plays a key role in inflammasome assembly. It is composed of an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain, which are protein interaction domains of the death fold superfamily. ASC interacts with NLRP3 via a homotypic PYD interaction and recruits procaspase-1 via a homotypic caspase recruitment domain interaction. Here we demonstrate that ASC PYD contains two distinct binding sites important for self-association and interaction with NLRP3 and the modulatory protein POP1. Modeling of the homodimeric ASC PYD complex formed via an asymmetric interaction using both sites resembles a type I interaction found in other death fold domain complexes. This interaction mode also permits assembly of ASC PYDs into filaments. Furthermore, a type I binding mode is likely conserved in interactions with NLRP3 and POP1, because residues critical for interaction of ASC PYD are conserved in these PYDs. We also demonstrate that ASC PYD can simultaneously self-associate and interact with NLRP3, rationalizing the model whereby ASC self-association upon recruitment to NLRP3 promotes clustering and activation of procaspase-1.  相似文献   

4.
Inflammation within the CNS is a major component of many neurodegenerative diseases. A characteristic feature is the generation of microglia‐derived factors that play an essential role in the immune response. IL‐1β is a pro‐inflammatory cytokine released by activated microglia, able to exacerbate injury at elevated levels. In the presence of caspase‐1, pro‐IL‐1β is cleaved to the mature cytokine following NOD‐like receptor pyrin domain containing 3 (NLRP3) inflammasome activation. Growing evidence suggests that ceramide plays a critical role in NLRP3 inflammasome assembly, however, the relationship between ceramide and inflammasome activation in microglia remains unknown. Here, we investigated potential mechanistic links between ceramide as a modulator of NLRP3 inflammasome assembly and the resulting secretion of IL‐1β using small bioactive enzyme stimulators and inhibitors of ceramide signaling in wild‐type and apoptosis‐associated speck‐like protein containing a CARD knockout (ASC?/?) primary microglia. To induce the expression of inflammasome components, microglia were primed prior to experiments. Treatment with sodium palmitate (PA) induced de novo ceramide synthesis via modulation of its synthesizing protein serine palmitoyl transferase resulting in increased IL‐1β secretion in microglia. Exposure of microglia to the serine palmitoyl transferase‐inhibitor l ‐cycloserine significantly prevented PA‐induced IL‐1β secretion. Application of the ceramide analogue C2 and the sphingosine‐1‐phosphate‐receptor agonist Fingolimod (FTY720) up‐regulated levels of IL‐1β and cleaved caspase‐1 in wild‐type microglia, whereas ASC?/? microglia were unaffected. HPA‐12 inhibition of ceramide transport did not affect inflammasome activation. Taken together, our findings reveal a critical role for ceramide as a positive modulator of NLRP3 inflammasome assembly and the resulting release of IL‐1β.

  相似文献   

5.
Palmitate triggers inflammatory responses in several cell types, but its effects on cardiac fibroblasts are at present unknown. The aims of the study were to (1) assess the potential of palmitate to promote inflammatory signaling in cardiac fibroblasts through TLR4 and the NLRP3 inflammasome and (2) characterize the cellular phenotype of cardiac fibroblasts exposed to palmitate. We examined whether palmitate induces inflammatory responses in cardiac fibroblasts from WT, NLRP3−/− and ASC−/− mice (C57BL/6 background). Exposure to palmitate caused production of TNF, IL-6 and CXCL2 via TLR4 activation. NLRP3 inflammasomes are activated in a two-step manner. Whereas palmitate did not prime the NLRP3 inflammasome, it induced activation in LPS-primed cardiac fibroblasts as indicated by IL-1β, IL-18 production and NLRP3-ASC co-localization. Palmitate-induced NLRP3 inflammasome activation in LPS-primed cardiac fibroblasts was associated with reduced AMPK activity, mitochondrial reactive oxygen species production and mitochondrial dysfunction. The cardiac fibroblast phenotype caused by palmitate, in an LPS and NLRP3 independent manner, was characterized by decreased cellular proliferation, contractility, collagen and MMP-2 expression, as well as increased senescence-associated β-galactosidase activity, and consistent with a state of cellular senescence. This study establishes that in vitro palmitate exposure of cardiac fibroblasts provides inflammatory responses via TLR4 and NLRP3 inflammasome activation. Palmitate also modulates cardiac fibroblast functionality, in a NLRP3 independent manner, resulting in a phenotype related to cellular senescence. These effects of palmitate could be of importance for myocardial dysfunction in obese and diabetic patients.  相似文献   

6.
The NLRP1 inflammasome responds to microbial challenges such as Bacillus anthracis infection and is implicated in autoimmune disease such as vitiligo. Human NLRP1 contains both an N‐terminal pyrin domain (PYD) and a C‐terminal caspase recruitment domain (CARD), with the latter being essential for its association with the downstream effector procaspase‐1. Here we report a 2.0 Å crystal structure of the human NLRP1 CARD as a fusion with the maltose‐binding protein. The structure reveals the six‐helix bundle fold of the NLRP1 CARD, typical of the death domain superfamily. The charge surface of the NLRP1 CARD structure and a procaspase‐1 CARD model suggests potential mechanisms for their association through electrostatic attraction. Proteins 2013; 81:1266–1270. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Persistent inflammasome activation contributes to chronic, low grade inflammation. However, it is unclear how the inflammasome activation is sustained after initiation. Here we reported that N4-acetylcytidine (N4A), a nucleoside metabolite, activated microglia and sustained NLRP3 inflammasome activation by inducing HMGB1 signaling. Released HMGB1 through N4A activated NFκB and induced NLRP3 expression. HMGB1 silencing abolished N4A-stimulated NFκB activation, NLRP3 and persistent HMGB1 expression. In addition, inhibiting NLRP3 expression by RNAi abrogated N4A-mediated HMGB1 expression. Lack of NLRP3 inflammasome adaptor named apoptosis-associated speck-like protein containing a CARD (ASC) abrogated N4A-induced HMGB1 expression, NFκB activation, and NLRP3 expression. Taken together, our results reveal a novel role of N4A in activation of NLRP3 inflamasome via HMGB1 feedback.  相似文献   

8.

Objective

Recent studies indicate that the innate immune system is not only triggered by exogenous pathogens and pollutants, but also by endogenous danger signals released during ischemia and necrosis. As triggers for the innate immune NLRP3 inflammasome protein complex appear to overlap with those for cardiac ischemia-reperfusion (I/R) and ischemic preconditioning (IPC), we explored the possibility that the NLRP3 inflammasome is involved in IPC and acute I/R injury of the heart.

Principal Findings

Baseline cardiac performance and acute I/R injury were investigated in isolated, Langendorff-perfused hearts from wild-type (WT), ASC−/− and NLRP3−/− mice. Deletion of NLRP3 inflammasome components ASC−/− or NLRP3−/− did not affect baseline performance. The deletions exacerbated I/R-induced mechanical dysfunction, but were without effect on I/R-induced cell death. When subjected to IPC, WT and ASC−/− hearts were protected against I/R injury (improved function and less cell death). However, IPC did not protect NLRP3−/− hearts against I/R injury. NLRP3−/− hearts had significantly decreased cardiac IL-6 levels with a trend towards lower IL-1β levels at end reperfusion, suggesting abrogation of IPC through diminished IL-6 and/or IL-1β signaling. Subsequent experiments showed that neutralising IL-6 using an antibody against IL-6 abrogated IPC in WT hearts. However, inhibition of the IL-1r receptor with the IL-1 receptor inhibitor Anakinra (100 mg/L) did not abrogate IPC in WT hearts. Analysis of survival kinases after IPC demonstrated decreased STAT3 expression in NLRP3−/− hearts when compared to WT hearts.

Conclusions

The data suggest that the innate immune NLRP3 protein, in an NLRP3-inflammasome-independent fashion, is an integral component of IPC in the isolated heart, possibly through an IL-6/STAT3 dependent mechanism.  相似文献   

9.

Introduction

NLRP3 plays a role in sensing various pathogen components or stresses in the innate immune system. Once activated, NLRP3 associates with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and procaspase-1 to form a large protein complex termed inflammasome. Although some investigators have proposed a model of NLRP3-inflammasome containing an adaptor protein caspase recruitment domain-containing protein 8 (CARD8), the role of this molecule remains obscure. This study aimed to clarify the interaction between CARD8 and wild-type NLRP3 as well as mutant forms of NLRP3 linked with cryopyrin-associated periodic syndromes (CAPS).

Methods

In here HEK293 expression system, cells were transfected with the cDNAs for inflammasome components. Also used were peripheral blood mononuclear cells (PBMCs) and human monocyte-derived macrophages (HMDMs) from healthy volunteers. The interaction of CARD8 and NLRP3 was studied by immunoprecipitation. The effect of CARD8 expression on IL-1β secretion was assessed by ELISA. CARD8 knockdown experiments were carried out by transfection of the specific siRNA into HMDMs.

Results

In HEK293 cells, CARD8 interacted with wild-type NLRP3, but not with CAPS-associated mutant NLRP3. CARD8 significantly reduced IL-1β secretion from cells transfected with wild-type NLRP3, but not if they were transfected with mutant NLRP3. In addition, association of endogenously expressed CARD8 with NLRP3 was confirmed in resting PBMCs, and CARD8 knockdown resulted in higher amount of IL-1β secretion from HMDMs.

Conclusions

Until specific stimuli activate NLRP3, CARD8 holds NLRP3, and is supposed to prevent activation by subtle stimuli. However, CAPS-associated mutant NLRP3 is unable to bind with CARD8, which might be relevant to the pathogenesis of CAPS.  相似文献   

10.
The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is a cytoplasmic supramolecular complex that is activated in response to cellular perturbations triggered by infection and sterile injury. Assembly of the NLRP3 inflammasome leads to activation of caspase-1, which induces the maturation and release of interleukin-1β (IL-1β) and IL-18, as well as cleavage of gasdermin D (GSDMD), which promotes a lytic form of cell death. Production of IL-1β via NLRP3 can contribute to the pathogenesis of inflammatory disease, whereas aberrant IL-1β secretion through inherited NLRP3 mutations causes autoinflammatory disorders. In this review, we discuss recent developments in the structure of the NLRP3 inflammasome, and the cellular processes and signaling events controlling its assembly and activation.  相似文献   

11.
Caspase recruitment domain (CARD)-only proteins (COPs), regulate apoptosis, inflammation, and innate immunity. They inhibit the assembly of NOD-like receptor complexes such as the inflammasome and NODosome, which are molecular complexes critical for caspase-1 activation. COPs are known to interact with either caspase-1 CARD or RIP2 CARD via a CARD-CARD interaction, and inhibit caspase-1 activation or further downstream signaling. In addition to the human COPs, Pseudo-ICE, INCA, and ICEBERG, several viruses also contain viral COPs that help them escape the host immune system. To elucidate the molecular mechanism of host immunity inhibition by viral COPs, we solved the structure of a viral COP for the first time. Our structure showed that viral COP forms a structural transformation-mediated dimer, which is unique and has not been reported in any structural study of a CARD domain. Based on the current structure, and the previously solved structures of other death domain superfamily members, we propose that structural transformation-mediated dimerization might be a new strategy for dimer assembly in the death domain superfamily.  相似文献   

12.
Receptor interacting protein-2, RIP2, is a serine/threonine kinase and has sequence homology to RIP. It functions as an adaptor molecule for some members from the tumor necrosis factor receptor family and mediates divergent signaling pathways including NF-κB activation and cell death. RIP2 contains an N-terminal kinases domain and a C-terminal caspase activation and recruitment domain (CARD). The apoptotic activity of RIP2 is restricted to its C-terminal CARD domain while NF-κB activation requires the intact RIP2 for binding. RIP2 CARD involved homotypic or heterotypic interactions with members of the death domains superfamily. Here I report backbone and sidechain 1H, 13C and 15N resonance assignments of soluble RIP2 CARD as a basis for further structural and functional studies.  相似文献   

13.
Atherosclerosis is a maladaptive chronic inflammatory disease, which remains the leading cause of death worldwide. The NLRP3 inflammasome constitutes a major driver of atherosclerosis, yet the mechanism of action is poorly understood. Mitochondrial dysfunction is essential for NLRP3 inflammasome activation. However, whether activated NLRP3 inflammasome exacerbates mitochondrial dysfunction remains to be further elucidated. Herein, we sought to address these issues applying VX765, a well-established inhibitor of caspase 1. VX765 robustly restrains caspase 1-mediated interleukin-1β production and gasdermin D processing. Our study assigned VX765 a novel role in antagonizing NLRP3 inflammasome assembly and activation. VX765 mitigates mitochondrial damage induced by activated NLRP3 inflammasome, as evidenced by decreased mitochondrial ROS production and cytosolic release of mitochondrial DNA. VX765 blunts caspase 1-dependent cleavage and promotes mitochondrial recruitment and phosphorylation of Parkin, a key mitophagy regulator. Functionally, VX765 facilitates mitophagy, efferocytosis and M2 polarization of macrophages. It also impedes foam cell formation, migration and pyroptosis of macrophages. VX765 boosts autophagy, promotes efferocytosis, and alleviates vascular inflammation and atherosclerosis in both ApoE−/− and Ldlr−/− mice. However, these effects of VX765 were abrogated upon ablation of Nlrp3 in ApoE−/− mice. This work provides mechanistic insights into NLRP3 inflammasome assembly and this inflammasome in dictating atherosclerosis. This study highlights that manipulation of caspase 1 paves a new avenue to treatment of atherosclerotic cardiovascular disease.Subject terms: Mitophagy, Atherosclerosis  相似文献   

14.
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (MTB), is one of the leading causes of death worldwide, especially in children. However, the mechanisms by which MTB infects its cellular host, activates an immune response, and triggers inflammation remain unknown. Mitochondria play important roles in the initiation and activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome, where mitochondria-associated endoplasmic reticulum membranes (MAMs) may serve as the platform for inflammasome assembly and activation. Additionally, mitofusin 2 (MFN2) is implicated in the formation of MAMs, but, the roles of mitochondria and MFN2 in MTB infection have not been elucidated. Using mircroarry profiling of TB patients and in vitro MTB stimulation of macrophages, we observed an up-regulation of MFN2 in the peripheral blood mononuclear cells of active TB patients. Furthermore, we found that MTB stimulation by MTB-specific antigen ESAT-6 or lysate of MTB promoted MFN2 interaction with NLRP3 inflammasomes, resulting in the assembly and activation of the inflammasome and, subsequently, IL-1β secretion. These findings suggest that MFN2 and mitochondria play important role in the pathogen-host interaction during MTB infection.  相似文献   

15.
16.
Inflammasomes are protein complexes assembled upon recognition of infection or cell damage signals, and serve as platforms for clustering and activation of procaspase-1. Oligomerisation of initiating proteins such as AIM2 (absent in melanoma-2) and NLRP3 (NOD-like receptor family, pyrin domain-containing-3) recruits procaspase-1 via the inflammasome adapter molecule ASC (apoptosis-associated speck-like protein containing a CARD). Active caspase-1 is responsible for rapid lytic cell death termed pyroptosis. Here we show that AIM2 and NLRP3 inflammasomes activate caspase-8 and -1, leading to both apoptotic and pyroptotic cell death. The AIM2 inflammasome is activated by cytosolic DNA. The balance between pyroptosis and apoptosis depended upon the amount of DNA, with apoptosis seen at lower transfected DNA concentrations. Pyroptosis had a higher threshold for activation, and dominated at high DNA concentrations because it happens more rapidly. Gene knockdown showed caspase-8 to be the apical caspase in the AIM2- and NLRP3-dependent apoptotic pathways, with little or no requirement for caspase-9. Procaspase-8 localised to ASC inflammasome ‘specks'' in cells, and bound directly to the pyrin domain of ASC. Thus caspase-8 is an integral part of the inflammasome, and this extends the relevance of the inflammasome to cell types that do not express caspase-1.  相似文献   

17.
NLRP1 was the first NOD-like receptor described to form an inflammasome, recruiting ASC to activate caspase-1, which processes interleukin-1β and interleukin-18 to their active form. A wealth of new genetic information has now redefined our understanding of this innate immune sensor. Specifically, rare loss-of-function variants in the N-terminal pyrin domain indicate that this part of NLRP1 is autoinhibitory and normally acts to prevent a familial autoinflammatory skin disease associated with cancer. In the absence of a ligand to trigger human NLRP1, these mutations have now confirmed the requirement of NLRP1 autolytic cleavage within the FIIND domain, which had previously been implicated in NLRP1 activation. Autolytic cleavage generates a C-terminal fragment of NLRP1 containing the CARD domain which then forms an ASC-dependent inflammasome. The CARD domain as an inflammasome linker is consistent with the observation that under some conditions, particularly for mouse NLRP1, caspase-1 can be engaged directly, and although it is no longer processed, it is still capable of producing mature IL-1β. Additional rare variants in a linker region between the LRR and FIIND domains of NLRP1 also cause autoinflammatory disease in both humans and mice. This new genetic information is likely to provide for more mechanistic insight in the years to come, contributing to our understanding of how NLRP1 functions as an innate immune sensor of infection and predisposes to autoimmune or autoinflammatory diseases.  相似文献   

18.
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease in the central nervous system (CNS). The NLRP3 inflammasome is considered an important regulator of immunity and inflammation, both of which play a critical role in MS. However, the underlying mechanism of NLRP3 inflammasome activation is not fully understood. Here we identified that the TRPV1 (transient receptor potential vanilloid type 1) channel in microglia, as a Ca2+ influx-regulating channel, played an important role in NLRP3 inflammasome activation. Deletion or pharmacological blockade of TRPV1 inhibited NLRP3 inflammasome activation in microglia in vitro. Further research revealed that TRPV1 channel regulated ATP-induced NLRP3 inflammasome activation through mediating Ca2+ influx and phosphorylation of phosphatase PP2A in microglia. In addition, TRPV1 deletion could alleviate mice experimental autoimmune encephalomyelitis (EAE) and reduce neuroinflammation by inhibiting NLRP3 inflammasome activation. These data suggested that the TRPV1 channel in microglia can regulate NLRP3 inflammasome activation and consequently mediate neuroinflammation. Meanwhile, our study indicated that TRPV1–Ca2+–PP2A pathway may be a novel regulator of NLRP3 inflammasome activation, pointing to TRPV1 as a potential target for CNS inflammatory diseases.Subject terms: Neuroimmunology, Neuroimmunology  相似文献   

19.
《Journal of lipid research》2017,58(6):1080-1090
The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis during hyperhomocysteinemia (hHcys). However, it remains unclear whether the NLRP3 inflammasome can be a therapeutic target for treatment of hHcys-induced kidney injury. Given that DHA metabolites-resolvins have potent anti-inflammatory effects, the present study tested whether the prototype, resolvin D1 (RvD1), and 17S-hydroxy DHA (17S-HDHA), an intermediate product, abrogate hHcys-induced podocyte injury by targeting the NLRP3 inflammasome. In vitro, confocal microscopy demonstrated that 17S-HDHA (100 nM) and RvD1 (60 nM) prevented Hcys-induced formation of NLRP3 inflammasomes, as shown by reduced colocalization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. Both DHA metabolites inhibited Hcys-induced caspase-1 activation and interleukin-1β production. However, DHA had no significant effect on these Hcys-induced changes in podocytes. In vivo, DHA lipoxygenase metabolites substantially inhibited podocyte NLRP3 inflammasome formation and activation and consequent glomerular sclerosis in mice with hHcys. Mechanistically, RvD1 and 17S-HDHA were shown to suppress Hcys-induced formation of lipid raft redox signaling platforms and subsequent O2·− production in podocytes. It is concluded that inhibition of NLRP3 inflammasome activation is one of the important mechanisms mediating the beneficial action of RvD1 and 17S-HDHA on Hcys-induced podocyte injury and glomerular sclerosis  相似文献   

20.

Background

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM). We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved.

Methods

Type 2 diabetic rat model was induced by high fat diet and low dose streptozotocin. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Gene silencing therapy was used to investigate the role of NLRP3 in the pathogenesis of DCM. High glucose treated H9c2 cardiomyocytes were used to determine the mechanism by which NLRP3 modulated the DCM. The cell death in vitro was detected by TUNEL and EthD-III staining. TXNIP-siRNA and pharmacological inhibitors of ROS and NF-kB were used to explore the mechanism of NLRP3 inflammasome activation.

Results

Diabetic rats showed severe metabolic disorder, cardiac inflammation, cell death, disorganized ultrastructure, fibrosis and excessive activation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, activated caspase-1 and mature interleukin-1β (IL-1β). Evidence for pyroptosis was found in vivo, and the caspase-1 dependent pyroptosis was found in vitro. Silencing of NLRP3 in vivo did not attenuate systemic metabolic disturbances. However, NLRP3 gene silencing therapy ameliorated cardiac inflammation, pyroptosis, fibrosis and cardiac function. Silencing of NLRP3 in H9c2 cardiomyocytes suppressed pyroptosis under high glucose. ROS inhibition markedly decreased nuclear factor-kB (NF-kB) phosphorylation, thioredoxin interacting/inhibiting protein (TXNIP), NLRP3 inflammasome, and mature IL-1β in high glucose treated H9c2 cells. Inhibition of NF-kB reduced the activation of NLRP3 inflammasome. TXNIP-siRNA decreased the activation of caspase-1 and IL-1β.

Conclusion

NLRP3 inflammasome contributed to the development of DCM. NF-κB and TXNIP mediated the ROS-induced caspase-1 and IL-1β activation, which are the effectors of NLRP3 inflammasome. NLRP3 gene silencing may exert a protective effect on DCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号