共查询到20条相似文献,搜索用时 15 毫秒
1.
Matthias M. Falk Cheryl L. Bell Rachael M. Kells Andrews Sandra A. Murray 《BMC cell biology》2016,17(Z1):S22
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena. 相似文献
2.
Molecular organization of gap junctions 总被引:4,自引:0,他引:4
Highly purified gap junction fractions from heart and liver contain a single major protein component. The proteins isolated from different organs have apparent molecular weights of 26,000-30,000. Peptide mapping and partial sequencing show close homology of the hepatic junctional protein of different species. In contrast, no homologies can be detected when polypeptides from different tissues of the rat were compared by peptide mapping. Preliminary results from partial sequencing, however, show that the amino terminal regions of the liver and heart proteins are related to one another. Sequencing has not yet revealed any such homologies between the lens and the other junction proteins. 相似文献
3.
Degradation of annular gap junctions of the equine hoof wall 总被引:1,自引:0,他引:1
Annular gap junctions interiorized within cells of the stratum spinosum of the coronary border of the equine hoof were degraded by two methods. Some were autophagocytized and some appeared to fuse with lysosomes to form heterophagosomes. Structural changes of partially degraded annular gap junctions included increased density of the enclosed cytoplasm, formation of filamentous or membrane-like material within the annular gap junction, and disruption of the circular or oval profile of the gap junction. The annular gap junctions are apparently incorporated into the fully keratinized cells of the stratum corneum. 相似文献
4.
Aman MJ Bosio CM Panchal RG Burnett JC Schmaljohn A Bavari S 《Microbes and infection / Institut Pasteur》2003,5(7):639-649
The filoviruses, Ebola and Marburg, are two of the most pathogenic viruses, causing lethal hemorrhagic fever in humans. Recent discoveries suggest that filoviruses, along with other phylogenetically or functionally related viruses, utilize a complex mechanism of replication exploiting multiple cellular components including lipid rafts, endocytic compartments, and vacuolar protein sorting machinery. In this review, we summarize these recent findings and discuss the implications for vaccine and therapeutics development. 相似文献
5.
Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis 总被引:3,自引:0,他引:3
Xia CH Liu H Cheung D Cheng C Wang E Du X Beutler B Lo WK Gong X 《Development (Cambridge, England)》2006,133(10):2033-2040
Different mutations of alpha3 connexin (Cx46 or Gja8) and alpha8 connexin (Cx50 or Gja8), subunits of lens gap junction channels, cause a variety of cataracts via unknown mechanisms. We identified a dominant cataractous mouse line (L1), caused by a missense alpha8 connexin mutation that resulted in the expression of alpha8-S50P mutant proteins. Histology studies showed that primary lens fiber cells failed to fully elongate in heterozygous alpha8(S50P/+) embryonic lenses, but not in homozygous alpha8(S50P/S50P), alpha8-/- and alpha3-/- alpha8-/- mutant embryonic lenses. We hypothesized that alpha8-S50P mutant subunits interacted with wild-type alpha3 or alpha8, or with both subunits to affect fiber cell formation. We found that the combination of mutant alpha8-S50P and wild-type alpha8 subunits specifically inhibited the elongation of primary fiber cells, while the combination of alpha8-S50P and wild-type alpha3 subunits disrupted the formation of secondary fiber cells. Thus, this work provides the first in vivo evidence that distinct mechanisms, modulated by diverse gap junctions, control the formation of primary and secondary fiber cells during lens development. This explains why and how different connexin mutations lead to a variety of cataracts. The principle of this explanation can also be applied to mutations of other connexin isoforms that cause different diseases in other organs. 相似文献
6.
Trafficking pathways underlying the assembly of connexins into gap junctions were examined using living COS-7 cells expressing a range of connexin-aequorin (Cx-Aeq) chimeras. By measuring the chemiluminescence of the aequorin fusion partner, the translocation of oligomerized connexins from intracellular stores to the plasma membrane was shown to occur at different rates that depended on the connexin isoform. Treatment of COS-7 cells expressing Cx32-Aeq and Cx43-Aeq with brefeldin A inhibited the movement of these chimera to the plasma membrane by 84 +/- 4 and 88 +/- 4%, respectively. Nocodazole treatment of the cells expressing Cx32-Aeq and Cx43-Aeq produced 29 +/- 16 and 4 +/- 7% inhibition, respectively. In contrast, the transport of Cx26 to the plasma membrane, studied using a construct (Cx26/43T-Aeq) in which the short cytoplasmic carboxyl-terminal tail of Cx26 was replaced with the extended carboxyl terminus of Cx43, was inhibited 89 +/- 5% by nocodazole and was minimally affected by exposure of cells to brefeldin A (17 +/-11%). The transfer of Lucifer yellow across gap junctions between cells expressing wild-type Cx32, Cx43, and the corresponding Cx32-Aeq and Cx43-Aeq chimeras was reduced by nocodazole treatment and abolished by brefeldin A treatment. However, the extent of dye coupling between cells expressing wild-type Cx26 or the Cx26/43T-Aeq chimeras was not significantly affected by brefeldin A treatment, but after nocodazole treatment, transfer of dye to neighboring cells was greatly reduced. These contrasting effects of brefeldin A and nocodazole on the trafficking properties and intercellular dye transfer are interpreted to suggest that two pathways contribute to the routing of connexins to the gap junction. 相似文献
7.
8.
Onoprienko LV 《Bioorganicheskaia khimiia》2011,37(4):437-451
This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms. 相似文献
9.
Motor neurons are a well-defined, although heterogeneous group of cells responsible for transmitting information from the
central nervous system to the locomotor system. Spinal motor neurons are specified by soluble factors produced by structures
adjacent to the primordial spinal cord, signaling through homeodomain proteins. Axonal pathfinding is regulated by cell-surface
receptors that interact with extracellular lignads and once synaptic connections have formed, the survival of the somatic
motor neuron is dependent on the provision of target-derived growth factors, although nontarget-derived factors, produced
by either astrocytes or Schwann cells, are also potentially implicated. Somatic motor neuron degeneration leads to profound
disability, and multiple pathogenetic mechanisms including aberrant growth factor signaling, abnormal neurofilament accumulation,
excitotoxicity, and autoimmunity have been postulated to be responsible. Even when specific deficits have been identified,
for example, mutations of the superoxide dismutase-1 gene in familial amyotrophic sclerosis and polyglutamine expansion of
the androgen receptor in spinal and bulbar muscular atrophy, the mechanisms by which somatic motor neuronal degeneration occurs
remain unclear. In order to treat motor system degeneration effectively, we will need to understand these mechanisms more
thoroughly. 相似文献
10.
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted. 相似文献
11.
《FEBS letters》2014,588(8):1331-1338
Formation of metastases negatively impacts the survival prognosis of cancer patients. Globally, if the various steps involved in their formation are relatively well identified, the molecular mechanisms responsible for the emergence of invasive cancer cells are still incompletely resolved. Elucidating what are the mechanisms that allow cancer cells to evade from the tumor is a crucial point since it is the first step of the metastatic potential of a solid tumor. In order to be invasive, cancer cells have to undergo transformations such as down-regulation of cell-cell adhesions, modification of cell-matrix adhesions and acquisition of proteolytic properties. These transformations are accompanied by the capacity to “activate” stromal cells, which may favor the motility of the invasive cells through the extracellular matrix. Since modulation of gap junctional intercellular communication is known to be involved in cancer, we were interested to consider whether these different transformations necessary for the acquisition of invasive phenotype are related with gap junctions and their structural proteins, the connexins. In this review, emerging roles of connexins and gap junctions in the process of tissue invasion are proposed. 相似文献
12.
13.
Crustacean growth and development is characterized by periodic shedding (ecdysis) and replacement of the rigid exoskeleton. Secretions of the X-organ sinus gland complex control the cellular events that lead to growth and molting. Western blot and ELISA results showed a progressive increase in growth arrest-specific protein (Gas7) from early postmolt stage to a maximum at late postmolt stage. Phosphorylation of ERK2, a downstream signaling protein, was also identified in the subsequent stages. ERK2 phosphorylation resulted in the expression of molt-inhibiting hormone (MIH). Specific ERK inhibitors (PD98059 and UO126) exhibited the ability to reduce the molting duration of Fenneropenaeus indicus from 12-14 days to 7-8 days, suggesting that the ERK1/2 signaling pathway is responsible for the expression of MIH, which controls the molt cycle. We have identified the stage-specific expression of Gas7 (approximately 48 kDa) in the X-organ sinus gland complex of eyestalk which is involved in the downstream signaling of the ERK1/2 pathway regulating the expression of MIH during the molt cycle of the white shrimp, F. indicus. These are the first data showing an association between the Gas7 signal-transduction process and regulation of the molt cycle and provides an alternative molecular intervention mechanism to the traditional eyestalk ablation in crustaceans. 相似文献
14.
Zahrt TC 《Microbes and infection / Institut Pasteur》2003,5(2):159-167
Establishing persistent infection and resisting elimination by the host's immune system are key factors contributing to latent infection by Mycobacterium tuberculosis. Recently, bacterial determinants regulating these processes have been identified. Here, we review molecular mechanisms regulating persistent infection and discuss the highly dynamic interaction of M. tuberculosis with the host. 相似文献
15.
Reflexive gap junctions. Gap junctions between processing arising from the same ovarian decidual cell 下载免费PDF全文
J C Herr 《The Journal of cell biology》1976,69(2):495-501
Ajacent processes on ovarian decidual cells were shown by electron microscopy to form gap junctions with one another. Micrographs of tissues preserved with lanthanum included in the fixative confirm the hexagonal array and 2-4 nm gap which characterize gap junctions. It is suggested that these gap junctions may play a role in the process of merocrine secretion from the peduncular processes of ovarian decidual cells. The term reflexive gap junction is introduced to describe gap junctions between adjacent processes from the same cell. 相似文献
16.
K. T. Ng M. E. Gibbs S. F. Crowe G. L. Sedman F. Hua W. Zhao B. O'Dowd N. Rickard C. L. Gibbs E. Syková J. Svoboda P. Jendelová 《Molecular neurobiology》1991,5(2-4):333-350
Studies with neonate chicks, trained on a passive avoidance task, suggest that at least two shorter-term memory stages precede long-term, protein synthesis-dependent memory consolidation. Posttetanic neuronal hyperpolarization arising from two distinct mechanisms is postulated to underlie formation of these two early memory stages. Maintenance of the second of these stages may involve a prolonged period of hyperpolarization brought about by phosphorylation of particular proteins. A triggering mechanism for long-term consolidation is postulated to occur at a specific time during the second stage, and may involve reinforcement-contingent release of neuronal noradrenaline stimulating cAMP-dependent intracellular processes. The possibility that astroglia may have a critical role to play in these early stages of memory processing is raised. 相似文献
17.
Chen Y Zhou Y Lin X Wong HC Xu Q Jiang J Wang S Lurtz MM Louis CF Veenstra RD Yang JJ 《The Biochemical journal》2011,435(3):711-722
Cx50 (connexin50), a member of the α-family of gap junction proteins expressed in the lens of the eye, has been shown to be essential for normal lens development. In the present study, we identified a CaMBD [CaM (calmodulin)-binding domain] (residues 141-166) in the intracellular loop of Cx50. Elevations in intracellular Ca2+ concentration effected a 95% decline in gj (junctional conductance) of Cx50 in N2a cells that is likely to be mediated by CaM, because inclusion of the CaM inhibitor calmidazolium prevented this Ca2+-dependent decrease in gj. The direct involvement of the Cx50 CaMBD in this Ca2+/CaM-dependent regulation was demonstrated further by the inclusion of a synthetic peptide encompassing the CaMBD in both whole-cell patch pipettes, which effectively prevented the intracellular Ca2+-dependent decline in gj. Biophysical studies using NMR and fluorescence spectroscopy reveal further that the peptide stoichiometrically binds to Ca2+/CaM with an affinity of ~5 nM. The binding of the peptide expanded the Ca2+-sensing range of CaM by increasing the Ca2+ affinity of the C-lobe of CaM, while decreasing the Ca2+ affinity of the N-lobe of CaM. Overall, these results demonstrate that the binding of Ca2+/CaM to the intracellular loop of Cx50 is critical for mediating the Ca2+-dependent inhibition of Cx50 gap junctions in the lens of the eye. 相似文献
18.
细胞自噬是细胞在面对内外部环境压力的情况下, 为了自身的稳定而采取的一种降解内部及外来入侵物质的机制。SNARE(Soluble N-ethylmaleimide-sensitive factor attachment protein receptors)假说指出SNARE蛋白在细胞物质运输以及特异性膜融合过程中具有重要作用, 揭示了细胞正常生理活动有序进行的分子机制。由于细胞自噬涉及从自噬体的形成到自噬体溶酶体的融合等诸多膜融合的过程, 因此, 文章对近年来SNARE蛋白在调控细胞自噬过程的研究进展进行了综述。 相似文献
19.
20.
Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells 下载免费PDF全文
Mitra S Annamalai L Chakraborty S Johnson K Song XH Batra SK Mehta PP 《Molecular biology of the cell》2006,17(12):5400-5416
The constituent proteins of gap junctions, called connexins (Cxs), have a short half-life. Despite this, the physiological stimuli that control the assembly of Cxs into gap junctions and their degradation have remained poorly understood. We show here that in androgen-responsive human prostate cancer cells, androgens control the expression level of Cx32-and hence the extent of gap junction formation-post-translationally. In the absence of androgens, a major fraction of Cx32 is degraded presumably by endoplasmic reticulum-associated degradation, whereas in their presence, this fraction is rescued from degradation. We also show that Cx32 and Cx43 degrade by a similar mechanism. Thus, androgens regulate the formation and degradation of gap junctions by rerouting the pool of Cxs, which normally would have been degraded from the early secretory compartment, to the cell surface, and enhancing assembly into gap junctions. Androgens had no significant effect on the formation and degradation of adherens and tight junction-associated proteins. The findings that in a cell culture model that mimics the progression of human prostate cancer, degradation of Cxs, as well as formation of gap junctions, are androgen-dependent strongly implicate an important role of junctional communication in the prostate morphogenesis and oncogenesis. 相似文献