首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many models of life history evolution assume trade-offs between major life history traits; however, these trade-offs are often not found. The Y model predicts that variation in acquisition can mask underlying allocation trade-offs and is a major hypothesis explaining why negative relationships are not always found between traits that are predicted to trade-off with one another. Despite this model's influence on the field of life history evolution, it has rarely been properly tested. We use a model system, the wing dimorphic cricket, Gryllus firmus as a case study to test the assumptions and predictions of the Y model. By experimentally altering the acquisition regime and by estimating energy acquisition and energy allocation directly in this species, we are able to explicitly test this important model. Overall, we find strong support for the predictions of the Y model.  相似文献   

2.
Allocation in life cycle inventory (LCI) analysis is one of the long‐standing methodological issues in life cycle assessment (LCA). Discussion on allocation among LCA researchers has taken place almost in complete isolation from the series of closely related discussions from the 1960s in the field of input?output economics, regarding the supply and use framework. This article aims at developing a coherent mathematical framework for allocation in LCA by connecting the parallel developments of the LCA and the input?output communities. In doing so, the article shows that the partitioning method in LCA is equivalent to the industry‐technology model in input?output economics, and system expansion in LCA is equivalent to the by‐product‐technology model in input?output output economics. Furthermore, we argue that the commodity‐technology model and the by‐product‐technology model, which have been considered as two different models in input?output economics for more than 40 years, are essentially equivalent when it comes to practical applications. It is shown that the matrix‐based approach used for system expansion successfully solves the endless regression problem that has been raised in LCA literature. A numerical example is introduced to demonstrate the use of allocation models. The relationship of these approaches with consequential and attributional LCA models is also discussed.  相似文献   

3.
Abstract A growth model for reproductive energy allocation pattern and schedule is proposed. Assumptions are as follows: (1) the assimilation rate for an individual is given by a logistic curve of vegetative dry weight; (2) size variability is expressed by the parameter W of the logistic curve (asymptotic value of vegetative dry weight); (3) a plant controls allocation of the assimilate to vegetative and reproductive structures so as to maximize the reproductive energy investment at the end of the growth period. The models were analyzed in comparison with field and experimental observations and gave reasonable explanations for the reproductive allocation pattern of individuals which reflects ecological preferences and life history characteristics, such as environmental conditions of habitats (stable or changing), length of life span (annual, biennial or perennial) and growth form (erectophile or planophile). Decreasing RA (reproductive allocation) with individual size and delayed switchover time from vegetative to reproductive growth were found in plants which occur in stable environments and have a more or less fixed growth period; in those which occur in changing environments where growth period depends on individual size, RAs that remain constant or increase with variations in individual size and early switchover time were detected. Most perennials conform to the former case, but annuals and biennials conform to the latter case. Under extremely overcrowded conditions, planophiles, which are much more subject to crowding effect than erectophiles, tend to have increasing RA with increasing size, while erectophiles tend to have almost constant RA irrespective of size. These trends are discussed in the light of the life history characteristics and ecological distribution of plant species studied.  相似文献   

4.
We studied costs and benefits of life history shifts of water fleas (genus Daphnia ) in response to infochemicals from planktivorous fish. We applied a dynamic energy budget model to investigate the resource allocation patterns underlying the observed life history shifts and their adaptive value under size selective predation in one coherent analysis. Using a published data set of life history shifts in response to fish infochemicals we show that Daphnia invests less energy in somatic growth in the fish treatment. This observation complies with theoretical predictions on optimal resource allocation. However, the observed patterns of phenotypic plasticity cannot be explained by changes in resource allocation patterns alone because our model-based analysis of the empirical data clearly identified additional bioenergetic costs in the fish treatments. Consequently, the response to fish kairomone only becomes adaptive if the intensity of size selective predation surpasses a certain critical level. We believe that this is the first study that puts resource allocation, energetic costs, and adaptive value of predator induced life-history shifts – using empirical data – into one theoretical framework.  相似文献   

5.
This first article of a two‐article series describes a framework and life cycle–based model for typical almond orchard production systems for California, where more than 80% of commercial almonds on the world market are produced. The comprehensive, multiyear, life cycle–based model includes orchard establishment and removal; field operations and inputs; emissions from orchard soils; and transport and utilization of co‐products. These processes are analyzed to yield a life cycle inventory of energy use, greenhouse gas (GHG) emissions, criteria air pollutants, and direct water use from field to factory gate. Results show that 1 kilogram (kg) of raw almonds and associated co‐products of hulls, shells, and woody biomass require 35 megajoules (MJ) of energy and result in 1.6 kg carbon dioxide equivalent (CO2‐eq) of GHG emissions. Nitrogen fertilizer and irrigation water are the dominant causes of both energy use and GHG emissions. Co‐product credits play an important role in estimating the life cycle environmental impacts attributable to almonds alone; using displacement methods results in net energy and emissions of 29 MJ and 0.9 kg CO2‐eq/kg. The largest sources of credits are from orchard biomass and shells used in electricity generation, which are modeled as displacing average California electricity. Using economic allocation methods produces significantly different results; 1 kg of almonds is responsible for 33 MJ of energy and 1.5 kg CO2‐eq emissions. Uncertainty analysis of important parameters and assumptions, as well as temporary carbon storage in orchard trees and soils, are explored in the second article of this two‐part article series.  相似文献   

6.
We review some recent theoretical and empirical developments in the study of sex allocation in birds. The advent of reliable molecular sexing techniques has led to a sharp increase in the number of studies that report biased offspring sex ratios in birds. However, compelling evidence for adaptive sex allocation in birds is still very scant. We argue that there are two reasons for this: (i) standard sex allocation models, very helpful in understanding sex allocation of invertebrates, do not sufficiently take the complexities of bird life histories and physiology into account. Recent theoretical work might bring us a step closer to more realistic models; (ii) experimental field and laboratory studies on sex allocation in birds are scarce. Recent experimental work both in the laboratory and in the field shows that this is a promising approach.  相似文献   

7.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components.  相似文献   

8.

Purpose

Models for quantifying impacts on biodiversity from renewable energy technologies are lacking within life cycle impact assessment (LCIA). We aim to provide an overview of the effects of wind energy on birds and bats, with a focus on quantitative methods. Furthermore, we investigate and provide the necessary background for how these can be integrated into new developments of LCIA models in future.

Methods

We reviewed available literature summarizing the effects of wind energy developments on birds and bats. We provide an overview of available quantitative assessment methods that have been employed outside of the LCIA framework to model the different impacts of wind energy developments on wildlife. Combining the acquired knowledge on impact pathways and associated quantitative methods, we propose possibilities for future approaches for a wind energy impact assessment methodology for LCIA.

Results and discussion

Wind energy production has impacts on terrestrial biodiversity through three main pathways: collision, disturbance, and habitat alterations. Birds and bats are consistently considered the most affected taxonomic groups, with different responses to the before-mentioned impact pathways. Outside of the LCIA framework, current quantitative impact assessment prediction models include collision risk models, species distribution models, individual-based models, and population modeling approaches. Developed indices allow scaling of species-specific vulnerability to mortality, disturbance, and/or habitat alterations.

Conclusions

Although insight into the causes behind collision risk, disturbance, and habitat alterations for bats and birds is still limited, the current knowledge base enables the development of a robust assessment tool. Modeling the impacts of habitat alterations, disturbance, and collisions within an LCIA framework is most appropriate using species distribution models as those enable the estimation of species’ occurrences across a region. Although local-scale developments may be more readily feasible, further up-scaling to global coverage is recommended to allow comparison across regions and technologies, and to assess cumulative impacts.
  相似文献   

9.
Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magnaPasteuria ramosa host–parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems.  相似文献   

10.
Sex allocation is an important field in evolutionary biology, both historically and currently. However, while sex allocation theory has successfully predicted sex ratio bias in some taxa, most notably parasitic wasps, vertebrates are notorious for their poor fit to theoretical models. We argue that this arises from the use of very complex model systems to test relatively simple theoretical models. We further argue that squamate reptiles – lizards and snakes – have unduly been neglected in sex allocation studies and in fact may conform more readily to the underlying assumptions of existing theoretical models than many other vertebrates. We provide a five-point argument in favor of the use of squamates as model systems in sex allocation based on their diversity in sex determining mechanisms, life history biology, and ease of experimental manipulations.  相似文献   

11.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

12.
An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation‐dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco‐physiological constraints and life‐history evolution and underscores how allocation‐dependent fitness components may underlie biological diversity.  相似文献   

13.

Purpose

The study aims to develop a methodological framework to estimate life cycle energy consumption and greenhouse gas (GHG) emissions related to pavement design and management decisions. Another objective is to apply the framework to the design and management of flexible highway pavement in Hong Kong. Traditionally, pavement design and management decisions are solely based on economic considerations. This study quantifies the relationships between such decisions and the environmental impacts, thereby helping highway agencies understand the environmental implications of their decisions and make more balanced decisions to improve highway sustainability.

Methods

(1) A methodological framework is developed by integrating the mechanistic-empirical pavement design guide (ME-PDG) and life cycle assessment (LCA) methods. (2) The calculation processes for the detailed components in the framework are proposed by synthesizing existing models, data, and tools. (3) In applying the framework to pavement design and management in Hong Kong, a large number of simulations are conducted to generate pavement performance data at different combinations of pavement thickness, roughness trigger value, and traffic levels. (4) GHG emissions and energy consumption are calculated for each simulation scenario, and the results are used to build statistical regression models. (5) The simulation and calculation results are also analyzed to gain additional insights on the environmental impacts of pavement design and management decisions.

Results and conclusions

(1) The developed framework that integrates ME-PDG and LCA methods is useful to assess pavement-related life cycle energy consumption and GHG emissions. (2) The developed regression models can well capture the trends of life cycle energy consumption and GHG emissions at different traffic levels, using asphalt concrete (AC) layer thickness and roughness trigger value as independent variables. (3) Material production, road use, and congestion due to road closure dominate pavement-related life cycle energy use and GHG emissions. (4) Optimum pavement thickness and international roughness index (IRI) trigger values exist, and they vary with traffic levels.
  相似文献   

14.
Models of life history evolution predict optimal traits of a simplified organism under various environmental conditions, but they at most acknowledge the existence of ageing. On the other hand, genetic models of ageing do not consider the effects of ageing on life histroy traits other than fecundity and longevity. This paper reports the results of a dynamic programming model which optimizes resource allocation to growth, reproduction and somatic repair. A low extrinsic (environmentally caused) mortality rate and high repair efficiency promote allocation to repair, especially early in life, resulting in delayed ageing and low growth rates, delayed maturity, large body size and dramatic enhancement of survival and maximum lifespan. The results are generally consistent with field, comprative and experimental data. They also suggest that the relationships between maximum lifespan and age at maturity and body size observed in nature may be by-products of optimal allocation strategies.  相似文献   

15.
Across taxa, many life‐history traits vary as a function of differences in body size. 1 - 5 Among primates, including humans, allometric relationships explain many trends in metabolic, growth, reproductive, and mortality rates. 6 - 8 But humans also deviate from nonhuman primates with respect to other developmental, reproductive, and parenting characteristics. 9 - 13 Broad relationships between life‐history traits and body size assume that energy expended in activity (foraging effort) is proportional to body size, and that energy available for growth and reproduction are equivalent. Because human subsistence and parenting are based on food sharing, and cooperation in labor and childrearing, the ways by which energy is acquired and allocated to alternate expenditures are expanded. We present a modification of the general allocation model to include a mechanism for these energy transfers. Our goal is to develop a framework that incorporates this mechanism and can explain the human life‐history paradox; that is, slow juvenile growth and rapid reproduction. We suggest that the central characteristics of human subsistence and energy transfer need to be accounted for in order to more fully appreciate human life‐history variability.  相似文献   

16.
The emergence and early developments of life are considered from the point of view that contingent events that inevitably marked evolution were accompanied by deterministic driving forces governing the selection between different alternatives. Accordingly, potential energy sources are considered for their propensity to induce self-organization within the scope of the chemical approach to the origin of life. Requirements in terms of quality of energy locate thermal or photochemical activation in the atmosphere as highly likely processes for the formation of activated low-molecular weight organic compounds prone to induce biomolecular self-organization through their ability to deliver quanta of energy matching the needs of early biochemical pathways or the reproduction of self-replicating entities. These lines of reasoning suggest the existence of a direct connection between the free energy content of intermediates of early pathways and the quanta of energy delivered by available sources of energy.  相似文献   

17.
Acquisition and allocation of resources are central to life‐history theory. However, empirical work typically focuses only on allocation despite the fact that relationships between fitness components may be governed by differences in the ability of individuals to acquire resources across environments. Here, we outline a statistical framework to partition the genetic basis of multivariate plasticity into independent axes of genetic variation, and quantify for the first time, the extent to which specific traits drive multitrait genotype–environment interactions. Our framework generalises to analyses of plasticity, growth and ageing. We apply this approach to a unique, large‐scale, multivariate study of acquisition, allocation and plasticity in the life history of the cricket, Gryllus firmus. We demonstrate that resource acquisition and allocation are genetically correlated, and that plasticity in trade‐offs between allocation to components of fitness is 90% dependent on genetic variance for total resource acquisition. These results suggest that genotype–environment effects for resource acquisition can maintain variation in life‐history components that are typically observed in the wild.  相似文献   

18.
19.
Abstract

Life history theory predicts that the patterns of resource allocation in animals are associated with different strategies, selected in the course of evolution. In the present study, the life history of Leptinaria unilamellata was characterized under laboratory conditions. We determined the growth, reproduction, and longevity patterns of this species and elucidated the strategy related to the development of embryos, through direct observations and examination of the morphology of the gravid uterus. Furthermore, we attempted to analyze the glycogen and galactogen contents of the albumen gland, digestive gland and cephalopedal mass in order to understand energy allocation to life history traits, for three life stages. Leptinaria unilamellata's life history is characterized by great longevity, a short juvenile phase, early sexual maturity, and repeated reproductive events, with little reproductive effort at each event and some mortality shortly after the first reproduction. In the terraria, we found juveniles but no eggs. However, the results of the anatomical study showed no morphological connection between the embryos and the parental organism. Thus, this species should be described as ovoviviparous rather than viviparous. Egg retention in the parent organism is the primary cause of the release of juveniles, instead of eggs, enabling the offspring to withstand environmental stress. The higher quantity of galactogen found in the adults' albumen gland, as compared to juveniles and senescent individuals, as well as the ratio of glycogen to galactogen, reveal the allocation of energy to reproduction rather than to growth. The remaining energy is directed to the maintenance of omeostasis. Such pattern was confirmed by the low levels of glycogen and galactogen observed in the senescent stage, compared to the juvenile and adult stages. In the life strategy of L. unilamellata, the distribution of the reproductive effort among many events associated with ovoviviparity indicates a long-term investment in reproductive success.  相似文献   

20.
The objective of this study was to investigate lipid accumulation and storage in age‐0 and age‐1 paddlefish Polyodon spathula (Walbaum, 1792) in relation to age, stock, year, and growth. Juvenile paddlefish were collected from three locations in North Dakota and Montana, USA, during July and August of 2011 and 2012 and proximate analysis was used to determine lipid content. RNA/DNA ratios were used as an index of growth rates. Differences in age‐based lipid accumulation and storage in juvenile paddlefish suggest a split allocation between growth and lipid storage, with growth being the highest initial priority and emphasis on energy storage occurring at a larger size, later in life. Differences in lipid allocation between stocks indicate that allocation is influenced by hatchery/wild rearing conditions. Differences within and between year‐classes are consistent with field evidence observed in 2012 of a strong 2011 year‐class, and indicate that during productive times, paddlefish may allocate energy to both body growth and lipid reserves, and that allocation differs among years. The lack of a relationship between RNA/DNA ratio and lipid does not support a physiologically exclusive allocation strategy between growth and lipid. Evidence from this and other studies suggests rather that an emphasis on growth, some energy storage, and a large rostrum size in relation to overall fish length in age‐0 and age‐1 fish, may be adaptive in avoiding predation while accruing necessary energy reserves for overwintering. Although this study also provides reference information regarding proximate composition of wild and hatchery origin juvenile paddlefish, much more study is needed into the relationships among growth, low and high lipid groups, lipid allocation in juvenile paddlefish as well as the existence and timing of allocation changes between growth and storage. To aid in understanding paddlefish survival and year‐class strengths, these relationships also need to be linked to inter‐annual differences in early rearing environments for age‐0 and age‐1 fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号