首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du  Nan  Chen  Jiao  Sun  Yanni 《BMC genomics》2019,20(2):49-62
Background

Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than second-generation sequencing technologies such as Illumina. The increased read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and characterize the intra-species variations. It also holds the promise to decipher the community structure in complex microbial communities because long reads help metagenomic assembly. One key step in genome assembly using long reads is to quickly identify reads forming overlaps. Because PacBio data has higher sequencing error rate and lower coverage than popular short read sequencing technologies (such as Illumina), efficient detection of true overlaps requires specially designed algorithms. In particular, there is still a need to improve the sensitivity of detecting small overlaps or overlaps with high error rates in both reads. Addressing this need will enable better assembly for metagenomic data produced by third-generation sequencing technologies.

Results

In this work, we designed and implemented an overlap detection program named GroupK, for third-generation sequencing reads based on grouped k-mer hits. While using k-mer hits for detecting reads’ overlaps has been adopted by several existing programs, our method uses a group of short k-mer hits satisfying statistically derived distance constraints to increase the sensitivity of small overlap detection. Grouped k-mer hit was originally designed for homology search. We are the first to apply group hit for long read overlap detection. The experimental results of applying our pipeline to both simulated and real third-generation sequencing data showed that GroupK enables more sensitive overlap detection, especially for datasets of low sequencing coverage.

Conclusions

GroupK is best used for detecting small overlaps for third-generation sequencing data. It provides a useful supplementary tool to existing ones for more sensitive and accurate overlap detection. The source code is freely available at https://github.com/Strideradu/GroupK.

  相似文献   

2.
Yoon  Byung-Jun  Qian  Xiaoning  Kahveci  Tamer  Pal  Ranadip 《BMC genomics》2020,21(9):1-3
Background

Haplotypes, the ordered lists of single nucleotide variations that distinguish chromosomal sequences from their homologous pairs, may reveal an individual’s susceptibility to hereditary and complex diseases and affect how our bodies respond to therapeutic drugs. Reconstructing haplotypes of an individual from short sequencing reads is an NP-hard problem that becomes even more challenging in the case of polyploids. While increasing lengths of sequencing reads and insert sizes helps improve accuracy of reconstruction, it also exacerbates computational complexity of the haplotype assembly task. This has motivated the pursuit of algorithmic frameworks capable of accurate yet efficient assembly of haplotypes from high-throughput sequencing data.

Results

We propose a novel graphical representation of sequencing reads and pose the haplotype assembly problem as an instance of community detection on a spatial random graph. To this end, we construct a graph where each read is a node with an unknown community label associating the read with the haplotype it samples. Haplotype reconstruction can then be thought of as a two-step procedure: first, one recovers the community labels on the nodes (i.e., the reads), and then uses the estimated labels to assemble the haplotypes. Based on this observation, we propose ComHapDet – a novel assembly algorithm for diploid and ployploid haplotypes which allows both bialleleic and multi-allelic variants.

Conclusions

Performance of the proposed algorithm is benchmarked on simulated as well as experimental data obtained by sequencing Chromosome 5 of tetraploid biallelic Solanum-Tuberosum (Potato). The results demonstrate the efficacy of the proposed method and that it compares favorably with the existing techniques.

  相似文献   

3.
Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.  相似文献   

4.
He  Feifei  Li  Yang  Tang  Yu-Hang  Ma  Jian  Zhu  Huaiqiu 《BMC genomics》2016,17(1):141-151
Background

The identification of inversions of DNA segments shorter than read length (e.g., 100 bp), defined as micro-inversions (MIs), remains challenging for next-generation sequencing reads. It is acknowledged that MIs are important genomic variation and may play roles in causing genetic disease. However, current alignment methods are generally insensitive to detect MIs. Here we develop a novel tool, MID (Micro-Inversion Detector), to identify MIs in human genomes using next-generation sequencing reads.

Results

The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp.

Conclusions

To our knowledge, MID is the first method that can efficiently and reliably identify MIs from unmapped short next-generation sequencing reads. MID is reliable on low coverage data, which is suitable for large-scale projects such as the 1000 Genomes Project (1KGP). MID identified previously unknown MIs from the 1KGP that overlap with genes and regulatory elements in the human genome. We also identified MIs in cancer cell lines from Cancer Cell Line Encyclopedia (CCLE). Therefore our tool is expected to be useful to improve the study of MIs as a type of genetic variant in the human genome. The source code can be downloaded from: http://cqb.pku.edu.cn/ZhuLab/MID.

  相似文献   

5.
We have used electron cryomicroscopy of single particles to determine the structure of the ATP synthase from Saccharomyces cerevisiae. The resulting map at 24 Å resolution can accommodate atomic models of the F1-c10 subcomplex, the peripheral stalk subcomplex, and the N-terminal domain of the oligomycin sensitivity conferral protein. The map is similar to an earlier electron cryomicroscopy structure of bovine mitochondrial ATP synthase but with important differences. It resolves the internal structure of the membrane region of the complex, especially the membrane embedded subunits b, c, and a. Comparison of the yeast ATP synthase map, which lacks density from the dimer-specific subunits e and g, with a map of the bovine enzyme that included e and g indicates where these subunits are located in the intact complex. This new map has allowed construction of a model of subunit arrangement in the FO motor of ATP synthase that dictates how dimerization of the complex via subunits e and g might occur.  相似文献   

6.
目的:利用二代测序技术检测GT1-7细胞中KISS1和GnRH基因启动子范围内的甲基化状态,并用金标准的亚硫酸氢盐修饰后的克隆测序作为对照,比较二代测序与金标准克隆测序在研究DNA甲基化检测中的差别。方法:提取GT1-7细胞基因组DNA并进行亚硫酸氢盐处理。进行巢式PCR,将PCR产物进行二代测序。同时采用金标准的亚硫酸氢盐修饰后克隆测序的方法作为对照,对相同批次的PCR产物进行克隆测序。结果:PCR产物二代测序结果表明KISS1和GnRH两个基因的27个CpG甲基化位点信息完整,结果准确。挑取10个克隆进行一代测序结果表明序列无丢失,KISS1和GnRH两个基因的27个CpG甲基化位点信息完整。结论:利用高通量的二代测序技术能够有效的对DNA甲基化的PCR产物进行检测,二代测序和克隆测序都是研究DNA甲基化的有效方法,但前者与克隆测序相比每一个读取序列(reads)都相当于一个单克隆,且二代测序每个区段得到成百上千个reads,因此二代测序结果更加精确。  相似文献   

7.
Hua  Kui  Zhang  Xuegong 《BMC genomics》2019,20(2):93-101
Background

Metagenomic sequencing is a powerful technology for studying the mixture of microbes or the microbiomes on human and in the environment. One basic task of analyzing metagenomic data is to identify the component genomes in the community. This task is challenging due to the complexity of microbiome composition, limited availability of known reference genomes, and usually insufficient sequencing coverage.

Results

As an initial step toward understanding the complete composition of a metagenomic sample, we studied the problem of estimating the total length of all distinct component genomes in a metagenomic sample. We showed that this problem can be solved by estimating the total number of distinct k-mers in all the metagenomic sequencing data. We proposed a method for this estimation based on the sequencing coverage distribution of observed k-mers, and introduced a k-mer redundancy index (KRI) to fill in the gap between the count of distinct k-mers and the total genome length. We showed the effectiveness of the proposed method on a set of carefully designed simulation data corresponding to multiple situations of true metagenomic data. Results on real data indicate that the uncaptured genomic information can vary dramatically across metagenomic samples, with the potential to mislead downstream analyses.

Conclusions

We proposed the question of how long the total genome length of all different species in a microbial community is and introduced a method to answer it.

  相似文献   

8.

Background  

Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as Gen Htr was developed for genome-wide heterogeneity analysis.  相似文献   

9.
10.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   

11.
Aims

Microstructure plays an important role in biological systems. Microstructural features are critical in the interaction between two biological organisms, for example, a microorganism and the surface of a plant. However, isolating the structural effect of the interaction from all other parameters is challenging when working directly with the natural system. Replicating microstructure of leaves was recently shown to be a powerful research tool for studying leaf-environment interaction. However, no such tool exists for roots. Roots present a special challenge because of their delicacy (specifically of root hairs) and their 3D structure. We aim at developing such a tool for roots.

Methods

Biomimetics use synthetic systems to mimic the structure of biological systems, enabling the isolation of structural function. Here we present a method which adapts tools from leaf microstructure replication to roots. We introduce new polymers for this replication.

Results

We find that Polyurethane methacrylate (PUMA) with fast UV curing gives a reliable replication of the tomato root surface microstructure. We show that our system is compatible with the pathogenic soilborne bacterium Ralstonia solanacearum.

Conclusions

This newly developed tool may be used to study the effect of microstructure, isolated from all other effects, on the interaction of roots with their environment.

  相似文献   

12.
Biswas  Bipasa  Lai  Yinglei 《BMC genomics》2019,20(2):35-47
Background

The next generation sequencing technology allows us to obtain a large amount of short DNA sequence (DNA-seq) reads at a genome-wide level. DNA-seq data have been increasingly collected during the recent years. Count-type data analysis is a widely used approach for DNA-seq data. However, the related data pre-processing is based on the moving window method, in which a window size need to be defined in order to obtain count-type data. Furthermore, useful information can be reduced after data pre-processing for count-type data.

Results

In this study, we propose to analyze DNA-seq data based on the related distance-type measure. Distances are measured in base pairs (bps) between two adjacent alignments of short reads mapped to a reference genome. Our experimental data based simulation study confirms the advantages of distance-type measure approach in both detection power and detection accuracy. Furthermore, we propose artificial censoring for the distance data so that distances larger than a given value are considered potential outliers. Our purpose is to simplify the pre-processing of DNA-seq data. Statistically, we consider a mixture of right censored geometric distributions to model the distance data. Additionally, to reduce the GC-content bias, we extend the mixture model to a mixture of generalized linear models (GLMs). The estimation of model can be achieved by the Newton-Raphson algorithm as well as the Expectation-Maximization (E-M) algorithm. We have conducted simulations to evaluate the performance of our approach. Based on the rank based inverse normal transformation of distance data, we can obtain the related z-values for a follow-up analysis. For an illustration, an application to the DNA-seq data from a pair of normal and tumor cell lines is presented with a change-point analysis of z-values to detect DNA copy number alterations.

Conclusion

Our distance-type measure approach is novel. It does not require either a fixed or a sliding window procedure for generating count-type data. Its advantages have been demonstrated by our simulation studies and its practical usefulness has been illustrated by an experimental data application.

  相似文献   

13.

Background

With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps.

Results

We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies.

Conclusions

Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.  相似文献   

14.
15.
ABSTRACT

Recent advances in genomic sequencing of multiple organisms have fostered significant advances in our understanding of the evolution of the sex chromosomes. The integration of this newly available sequence information with functional data has facilitated a considerable refinement of our conceptual framework of the forces driving this evolution. Here we address multiple functional constraints that were encountered in the evolution of the X chromosome and the impact that this evolutionary history has had on its modern behavior.  相似文献   

16.
Background and AimsWith the advance of high-throughput sequencing, reduced-representation methods such as target capture sequencing (TCS) emerged as cost-efficient ways of gathering genomic information, particularly from coding regions. As the off-target reads from such sequencing are expected to be similar to genome skimming (GS), we assessed the quality of repeat characterization in plant genomes using these data.MethodsRepeat composition obtained from TCS datasets of five Rhynchospora (Cyperaceae) species were compared with GS data from the same taxa. In addition, a FISH probe was designed based on the most abundant satellite found in the TCS dataset of Rhynchospora cephalotes. Finally, repeat-based phylogenies of the five Rhynchospora species were constructed based on the GS and TCS datasets and the topologies were compared with a gene-alignment-based phylogenetic tree.Key ResultsAll the major repetitive DNA families were identified in TCS, including repeats that showed abundances as low as 0.01 % in the GS data. Rank correlations between GS and TCS repeat abundances were moderately high (r = 0.58–0.85), increasing after filtering out the targeted loci from the raw TCS reads (r = 0.66–0.92). Repeat data obtained by TCS were also reliable in developing a cytogenetic probe of a new variant of the holocentromeric satellite Tyba. Repeat-based phylogenies from TCS data were congruent with those obtained from GS data and the gene-alignment tree.ConclusionsOur results show that off-target TCS reads can be recycled to identify repeats for cyto- and phylogenomic investigations. Given the growing availability of TCS reads, driven by global phylogenomic projects, our strategy represents a way to recycle genomic data and contribute to a better characterization of plant biodiversity.  相似文献   

17.

Background

Massively parallel sequencing offers an enormous potential for expression profiling, in particular for interspecific comparisons. Currently, different platforms for massively parallel sequencing are available, which differ in read length and sequencing costs. The 454-technology offers the highest read length. The other sequencing technologies are more cost effective, on the expense of shorter reads. Reliable expression profiling by massively parallel sequencing depends crucially on the accuracy to which the reads could be mapped to the corresponding genes.

Methodology/Principal Findings

We performed an in silico analysis to evaluate whether incorrect mapping of the sequence reads results in a biased expression pattern. A comparison of six available mapping software tools indicated a considerable heterogeneity in mapping speed and accuracy. Independently of the software used to map the reads, we found that for compact genomes both short (35 bp, 50 bp) and long sequence reads (100 bp) result in an almost unbiased expression pattern. In contrast, for species with a larger genome containing more gene families and repetitive DNA, shorter reads (35–50 bp) produced a considerable bias in gene expression. In humans, about 10% of the genes had fewer than 50% of the sequence reads correctly mapped. Sequence polymorphism up to 9% had almost no effect on the mapping accuracy of 100 bp reads. For 35 bp reads up to 3% sequence divergence did not affect the mapping accuracy strongly. The effect of indels on the mapping efficiency strongly depends on the mapping software.

Conclusions/Significance

In complex genomes, expression profiling by massively parallel sequencing could introduce a considerable bias due to incorrectly mapped sequence reads if the read length is short. Nevertheless, this bias could be accounted for if the genomic sequence is known. Furthermore, sequence polymorphisms and indels also affect the mapping accuracy and may cause a biased gene expression measurement. The choice of the mapping software is highly critical and the reliability depends on the presence/absence of indels and the divergence between reads and the reference genome. Overall, we found SSAHA2 and CLC to produce the most reliable mapping results.  相似文献   

18.
With the rapid and steady increase of next generation sequencing data output, the mapping of short reads has become a major data analysis bottleneck. On a single computer, it can take several days to map the vast quantity of reads produced from a single Illumina HiSeq lane. In an attempt to ameliorate this bottleneck we present a new tool, DistMap - a modular, scalable and integrated workflow to map reads in the Hadoop distributed computing framework. DistMap is easy to use, currently supports nine different short read mapping tools and can be run on all Unix-based operating systems. It accepts reads in FASTQ format as input and provides mapped reads in a SAM/BAM format. DistMap supports both paired-end and single-end reads thereby allowing the mapping of read data produced by different sequencing platforms. DistMap is available from http://code.google.com/p/distmap/  相似文献   

19.
Feng  Xikang  Chen  Lingxi  Qing  Yuhao  Li  Ruikang  Li  Chaohui  Li  Shuai Cheng 《BMC genomics》2021,22(5):1-13
Background

All diseases containing genetic material undergo genetic evolution and give rise to heterogeneity including cancer and infection. Although these illnesses are biologically very different, the ability for phylogenetic retrodiction based on the genomic reads is common between them and thus tree-based principles and assumptions are shared. Just as the different frequencies of tumor genomic variants presupposes the existence of multiple tumor clones and provides a handle to computationally infer them, we postulate that the different variant frequencies in viral reads offers the means to infer multiple co-infecting sublineages.

Results

We present a common methodological framework to infer the phylogenomics from genomic data, be it reads of SARS-CoV-2 of multiple COVID-19 patients or bulk DNAseq of the tumor of a cancer patient. We describe the Concerti computational framework for inferring phylogenies in each of the two scenarios.To demonstrate the accuracy of the method, we reproduce some known results in both scenarios. We also make some additional discoveries.

Conclusions

Concerti successfully extracts and integrates information from multi-point samples, enabling the discovery of clinically plausible phylogenetic trees that capture the heterogeneity known to exist both spatially and temporally. These models can have direct therapeutic implications by highlighting “birth” of clones that may harbor resistance mechanisms to treatment, “death” of subclones with drug targets, and acquisition of functionally pertinent mutations in clones that may have seemed clinically irrelevant. Specifically in this paper we uncover new potential parallel mutations in the evolution of the SARS-CoV-2 virus. In the context of cancer, we identify new clones harboring resistant mutations to therapy.

  相似文献   

20.

Background

Despite the short length of their reads, micro-read sequencing technologies have shown their usefulness for de novo sequencing. However, especially in eukaryotic genomes, complex repeat patterns are an obstacle to large assemblies.

Principal Findings

We present a novel heuristic algorithm, Pebble, which uses paired-end read information to resolve repeats and scaffold contigs to produce large-scale assemblies. In simulations, we can achieve weighted median scaffold lengths (N50) of above 1 Mbp in Bacteria and above 100 kbp in more complex organisms. Using real datasets we obtained a 96 kbp N50 in Pseudomonas syringae and a unique 147 kbp scaffold of a ferret BAC clone. We also present an efficient algorithm called Rock Band for the resolution of repeats in the case of mixed length assemblies, where different sequencing platforms are combined to obtain a cost-effective assembly.

Conclusions

These algorithms extend the utility of short read only assemblies into large complex genomes. They have been implemented and made available within the open-source Velvet short-read de novo assembler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号